Learning Outcomes based Curriculum Framework (LOCF)

For

Master of Technology (Mechanical Engineering) Two Year Regular Full-Time Postgraduate Programme

Faculty of Engineering and Technology Chaudhary Devi Lal University Sirsa-125055 2022

Table of Contents

- 1. Faculty of Engineering and Technology
- 2. Learning Outcomes based Curriculum Framework
 - 2.1 Objectives of the programme
 - 2.2 Programme Outcomes (POs)
 - 2.3 Programme Specific Outcomes (PSOs)
- 3. Programme Structure

1. Faculty of Engineering & Technology

The Faculty covers the professional and academic programmes/courses run in the university teaching department of computer science and engineering, university school of graduate studies, affiliated general degree colleges, institute of computer applications and engineering colleges. BTech and MTech programmes in major disciplines and MCA, MSc Data Science, BSc Data Science, BCA programmes are managed by the Faculty.

2. Learning Outcome based Curriculum Framework

The CBCS evolved into learning outcome based curriculum framework and provides an opportunity for the students to choose courses from the prescribed courses comprising core, elective/minor or skill-based courses. The courses can be evaluated following the grading system, which is considered to be better than the conventional marks system. Grading system provides uniformity in the evaluation and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations which enables the student to move across institutions of higher learning. The uniformity in evaluation system also enables the potential employers in assessing the performance of the candidate.

2.1 Objectives of the programme

After spending two years in their profession Master of Technology (Mechanical Engineering) regular full-time graduates are expected to:

- Create and maintain an environment for excellence in Instruction, Learning, and Applied Research in the area of Mechanical so as to equip the students with necessary knowledge and skills for higher education/employment and to meet the social demands.
- Combine excellence and research with service to society and provide students with a balance of intellectual and practical experiences.
- Cater the need of various industries particularly aerospace, defence and scientific industries.
- Create the centre of excellence in the field of Mechanical Engineering and ensure that the students after completion under this programme be capable enough to take over the challenges related to the design and manufacturing of the sophisticated components required in aerospace, auto industry, defence etc.
- Develop communication skills necessary to function productively in the given settings to achieve a successful professional/vocational career with academic and professional ethics and social obligations.
- Engage in lifelong learning, career enhancement and adapt to changing professional, societal, and environmental needs in a way confirming to his/her position in the profession/vocation.

2.2 Programme Outcomes (POs)

PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis: Identify, formulate, review research literature, and analyzecomplex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions: Design solutions for complex engineeringproblems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complexengineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as amember and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

2.3 Programme Specific Outcomes (PSOs)

The graduates of the Master of Technology in Mechanical Engineering regular full-time programme will have/be:

PSO1	To impart knowledge to students in the latest technological topics on Mechanical Engineering and to provide them with opportunities in taking up advanced topics in the field of research.
PSO2	To create a congenial environment that promotes learning, growth and imparts ability to work with inter-disciplinary research
PSO3	To broaden and deepen their capabilities in analytical and experimental research methods, analysis of data, and drawing relevant conclusions for scholarly writing and presentation of their research work.
PSO4	To provide guidance to students for their choices in research and professional career outlook and to encourage students to take up research.
PSO5	To equip students with integrity and ethical values so that they become responsible technocrats

3. Programme Structure

Master of Technology (Mechanical Engineering) programme, a four-semester postgraduate programme is 80 credits weightage consisting of Core Courses (CC), Discipline Specific Elective Courses (DSC), Skill Enhancement Courses (SEC), Open Elective Courses (OEC);

Sem	Core C (C		DisciplineSkillSpecific ElectiveEnhancementCourses (DSC)Courses (SEC)		Open D Courses	Grand Total Credits			
	No. of Courses	Total Credits	No. of Courses	Total Credits	No. of Courses	Total Credits	No. of Courses	Total Credits	
Ι	07	24	-	-	-	-	-	-	24
II	06	20	01	04	-	-	01	04	28
III	02	06	01	04	01	04	01	04	18
IV	-	-	-	-	01	10	-	-	10
Total	15	50	02	08	02	14	02	08	80
%age	-	62.5	-	10.0	-	17.5	-	10.0	100

 Table 1: Master of Technology (Mechanical Engineering) Credit Scheme

* A total of 08 credits are to be earned from other Engineering Departments or from MOOCs.

Sem	Core	Discipline Specific		Open Elective	
	Courses	Elective Courses	Enhancement Courses	Courses	Courses
	CC1		Courses		
	CC2				
I	CC3				
	CC4	-	-	-	7
	CC5				
	CC6				
	CC7				
	CC8				
II	CC9				
	CC10	DSC1	_	OEC1	8
	CC11	DBCI	_	OLCI	0
	CC12				
	CC13				
III	CC14	DSC2	SEC1	OEC2	5
	CC15	2502		0102	5
IV	-	-	SEC2	-	1

 Table 2: Detailed break-up of Courses' Type (Semester wise)

Table 3: Courses' codes, titles, and credits

Course Code	Course Title	Contact Hours/Credit					
	Semester I	L	Т	Р	Total		
MTech/ME/1/CC1	Advanced Mechanics of Solids	4/4	-	-	4/4		
MTech/ME/1/CC2	Advanced Engineering Materials	4/4	-	-	4/4		
MTech/ME/1/CC3	Automation in Manufacturing	4/4	-	-	4/4		
MTech/ME/1/CC4	CNC Technology and Programming	4/4	_	-	4/4		
MTech/ME/1/CC5	Total Quality Management	4/4	-	-	4/4		
MTech/ME/1/CC6	Advanced Mechanics of Solids Lab	-	-	4/2	4/2		
MTech/ME/1/CC7	CNC Technology and Programming Lab	-	-	4/2	4/2		
	Semester II						
MTech/ME/2/CC8	Advanced Machine Design	4/4	-	-	4/4		
MTech/ME/2/CC9	Computer Aided Design and Manufacturing	4/4	-	-	4/4		
MTech/ME/2/CC10	Casting and Welding Technology	4/4	-	-	4/4		
MTech/ME/2/CC11	Tool Engineering	4/4	-	-	4/4		
MTech/ME/2/DSC1(i)	Modern Manufacturing Processes	4/4	_	-	4/4		
MTech/ME/2/DSC1(ii)	Instrumentation and Measuring Systems	-					
MTech/ME/2/DSC1(iii)	Manufacturing Information Systems						
MTech/ME/2/CC12	Computer Aided Design and Manufacturing Lab	-	-	4/2	4/2		

MTech/ME/2/CC13	Casting and Welding Technology Lab	-	-	4/2	4/2
MTech/ME/3/OEC1	Students shall complete a 4-credit	4/4	-	-	4/4
	open elective course offered by other				
	Engineering Departments/MOOCs				
	Semester III				
MTech/ME/3/CC14	Tribology	4/4	-	-	4/4
MTech/ME/3/DSC2(i)	Smart Mobility and Intelligent	4/4	-	-	4/4
	Vehicles				
MTech/ME/3/DSC2(ii)	Sustainable Manufacturing				
MTech/ME/3/DSC2(iii)	Flexible Manufacturing System				
MTech/ME/3/CC15	Tribology Lab	-	-	4/2	4/2
MTech/ME/3/SEC1	Dissertation Part-1 with Seminar	-	-	8/4	8/4
MTech/ME/3/OEC2	Students shall complete a 4-credit	4/4	-	-	4/4
	open elective course offered by other				
	Engineering Departments/MOOCs				
	Semester IV				
MTech/ME /4/SEC2	Dissertation Part -II	-	-	20/10	20/10
	TOTAL	56/56	-	48/24	104/80

Table 4: M.Tech. Mechanical Engineering Regular Full Time Courses' List

Course Code	Course Title	Credits			
	Core Courses	4			
MTech/ME/1/CC1	Advanced Mechanics of Solids	4			
MTech/ME/1/CC2	Advanced Engineering Materials	4			
MTech/ME/1/CC3	Automation in Manufacturing	4			
MTech/ME/1/CC4	CNC Technology and Programming	4			
MTech/ME/1/CC5	Total Quality Management	4			
MTech/ME/1/CC6	Advanced Mechanics of Solids Lab	2			
MTech/ME/1/CC7	CNC Technology and Programming Lab	2			
MTech/ME/2/CC8	Advanced Machine Design	4			
MTech/ME/2/CC9	Computer Aided Design and Manufacturing				
MTech/ME/2/CC10	Casting and Welding Technology	4			
MTech/ME/2/CC11	Tool Engineering	4			
MTech/ME/2/CC12	Computer Aided Design and Manufacturing Lab	2			
MTech/ME/2/CC13	Casting and Welding Technology Lab	2			
MTech/ME/3/CC14	Tribology	4			
MTech/ME/3/CC15	Tribology Lab	2			
	Discipline Specific Elective Courses				
MTech/ME/2/DSC1(i)	Modern Manufacturing Processes	4			
MTech/ME/2/DSC1(ii)	Instrumentation and Measuring Systems				
MTech/ME/2/DSC1(iii)	Manufacturing Information Systems				
MTech/ME/3/DSC2(i)					
MTech/ME/3/DSC2(ii)					
MTech/ME/3/DSC2(iii)	Flexible Manufacturing System				
	Skill Enhancement Courses				

MTech/ME/3/SEC1	Dissertation Part-1 with Seminar	4						
MTech/ME/4/SEC2	Dissertation Part-2	10						
	Open Elective Courses							
MTech/ME/2/OEC1	Students shall complete a 4-credit open elective course	4						
	offered by other Engineering Departments/MOOCs							
MTech/ME/3/OEC2	Students shall complete a 4-credit open elective course	4						
	offered by other Engineering Departments/MOOCs							
Open Electives Courses	offered to the M.Tech. students of other Engineering Depa	rtments						
ME/OEC1	Supply Chain and Logistics Management	4						
ME/OEC2	Entrepreneurship Development Skills	4						
ME/OEC3	Quality and Reliability Engineering	4						
ME/OEC4	Computer Integrated Manufacturing	4						

SEMESTER – I

	MTech/ME/1/CC1: Advanced Mechanics of Solids									
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment			
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods			
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance			

Instructions to paper setter for Final Term Examination: Final Term examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives:

To understand the concepts of stress and strain, strength and stiffness, deformation and displacement and energy theorems.

To design machine elements using theories of deformable bodies.

• To predict the behaviour of the solid bodies subjected to various types of loading.

1				5		71						
Course Outcomes	At the end of this course, the student will be able to:											
CO1	and ener	Understand the concepts of stress and strain, strength and stiffness, deformation and displacement and energy theorems										
CO2	Predict	Predict the behaviour of the solid bodies subjected to various types of loading.										
CO3	Design	machine	elements	using the	ories of d	eformabl	e bodie	s.				
CO-PO Mapping Matrix for Course MTech/ME/1/CC1												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1	-	1	-	-	-	-	1
CO2	2	3	3	2	1	1	1	-	1	1	-	1
CO3	2	2	3	2	2	1	-	-	2	1	-	1
Average	2.33	2.66	2.33	1.66	1.33	0.66	0.66	-	1	0.66	-	1
Course Content MTech/ME/1/CC1: Advanced Mechanics of Solids												
Unit I	stress and	tes: Cau al Stresso d plane st heorems:	chy's for es, Hydro rain, com Strain er	rmula, P ostatic and patibility nergy due	rincipal deviator condition to axial	stresses ric stress is. load, ber	and p , Differ nding, sl	rincipal ential e hear an	strain quation d torsio	s, 3D M s of equ n, Maxw	Aohr's ilibrium	Circle, , Plane
Unit - II	Unit - IIUnsymmetrical bending: Shear centers for sections with one axis of symmetry, shear center for any unsymmetrical Section, stress and deflection of beams subjected to unsymmetrical bending. Axi- Symmetric Problems: Rotating Discs – Flat discs, Discs of uniform thickness, Discs of Uniform Strength, Rotating Cylinders.							xi-				
Unit - III	Buckling continuou Bending plate def Circular	us lateral of plates lection, b	Load, end : Basic de	d couple, efinition,	couples a stress cu	t both en rvature a	ds trian ind mor	gular lo nent rel	ads. lations,	different	ial equa	tion of

Unit - IVBeam on Elastic Foundations: General theory, infinite, semi-infinite, finite beams classificati beams, Beam supported by equally spaced elastic elements. Stress concentration: Stress concentration in tension or compression members, Stresses in a pla a circular hole, elliptical hole, small semi-circular grooves.								
	Text/Reference Books							
,	1. Srinath L.S, "Advanced Mechanics of Solids", Tata McGraw-Hill Education, 2010.							
	2. Ryder G.H, "Strength of Material", Macmillan, India, 1961.							
-	 Sadhu Singh, "Strength of Materials", Khanna Publishers, India, 2012. Muubeen A, "Mechanics of Solid", Pearson Publications, India, 2011. 							

- Popov E.P, "Engineering Mechanics of Solids", Prentice Hall of India, 2006
- 6. Timoshenko S, "Strength of Materials Part-11", East-West Press Pvt. Ltd., New Delhi, 2012.

	MTech/ME/1/CC2: Advanced Engineering Materials											
Course Type				Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					

Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives:

- To understand significance of material science and its role in manufacturing.
- To analyze the importance of various engineering materials (metals, polymers, ceramics, composites, Semiconductor).
- To recite ceramics and composites, their manufacturing techniques, properties and applications.

To propose appropriate plastics and polymers for different applications.														
Course Outcomes														
CO1	Unde	Understand significance of material science and its role in manufacturing.												
CO2		Analyze the importance of various engineering materials (metals, polymers, ceramics, composites, Semi-conductor). Recite ceramics and composites, their manufacturing techniques, properties and applications.												
CO 3					es, their	manufa	cturing	techniqu	ies, pro	perties	and ap	oplicati	ons.	
CO 4	Prop	Propose appropriate plastics and polymers for different applications.												
	CO-P	'O Map	ping M	latrix f	or Cour	se MI	Tech/M	E/1/CC	2					
COs	PO1													
CO1	2	2 3 2 1 1 - 1 - 2												
CO2	3													
CO3	3	3 3 1 1 2 - 2 - 1 1 1											-	
CO4	2												-	
Average	2.5													
Course Content MTech/ME/1/CC2: Advanced Engineering Materials														
Unit I Non-Ferrous Materials: Copper and its Alloys, Aluminium and its Alloys, Nickel and its Alloys, Zinc and its Alloys, Titanium and its Alloys, Magnesium and its Alloys, Cobalt and its Alloys, Lead and its Alloys.														
Unit - II	Ferrous Materials: Production of Iron and Steel, Cast Irons, Low Alloy and High Alloy Steels, Tool Steels, Stainless Steels, Iron Carbon System, Time Temperature Transformation Relations, Heat Treatment of Plain Carbon Steels, Selective and Surface-Hardening.													
Unit - III	Polymers, Composites and Ceramics : Polymer Materials (Introduction), Polymer Structure, Thermoplastics, Thermosets, Elastomers, Types and Applications of Ceramics, Properties of Ceramics Materials, Glass, Cements, Refractories and Advanced Ceramics, Structure of Composites, Metal Matrix Composites, Ceramic Matrix Composites, Polymer Matrix Composites, Fiberglass, Carbon Fiber Reinforced Polymer Composites, Properties of Composites.													
Unit - IV	Storage		, Functi										Hydrogen gy, Sound	

- 1. William F. Smith, Havad Hashemi and Ravi Prakash, "Material Science and Engineeing", Tata McGraw Hill Education (P) Ltd, 2013.
- 2. William D. Callister, Jr. and Balasubramaniam, R., "Callister's Material Science and Engineering" Wiley India (P) Ltd, 2009.
- 3. Gandhi and Thompson, "Smart Materials and Structures", Chapman and Hall, 1992.
- 4. Gladius Lewis, "Selection of Engineering Materials" Prentice-Hall, 1989.
- 5. Rama Rao, "Advances in Materials and their applications", Wiley Eastern Ltd, 1993.

MTech/ME/1/CC3: Automation In Manufacturing											
Course Type			Delivery	Maximu	m Marks	Exam	Assessment Methods				
	Credit	Hours/Week	Mode	External Internal		Duration					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance				

Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: To inculcate the ability to design of hydraulic, pneumatic and electro-pneumatic logic circuits for automating processes in manufacturing, demonstrate problem-solving skills in automation and safely use the machines in the industries. Also, to explore the use of different sensors, control valves, controllers and actuators for electro-pneumatic & hydraulic circuits.

-												
Course Outcomes	At the	end of	this cour	rse, the s	student	will be a	able to	:				
CO1	Unders	stand the	concepts	s of autor	mation tl	heory an	d its ap	plicatior	ns in vari	ous field	s of	
	manufa	acturing.										
CO2	Unders	stand pri	inciples,	methods	s, and h	nardware	/softwa	are tools	used i	n moder	n comp	uterized
			ufacturii									
CO3				nciples a	and comp	ponents i	involve	d in opti	mizing p	productio	n system	1
	design and operations.											
CO-PO Mapping Matrix for Course MTech/ME/1/CC3												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	3	2	2	1	1	-	-	-
CO2	3	2	2	2	3	2	-	-	-	-	1	-
CO3	3	2	3	2	3	2	1	-	-	-	-	-
Average	3	2	2.66	2	3	2	1	0.33	0.33	-	0.33	-
				0	0							

Course Content

	MTech/ME/1/CC3: Automation In Manufacturing
Unit I	Introduction to Factory Automation and Integration : Basic Concepts, Types of automation, Automation. Modern developments in automation in manufacturing and its effect on global competitiveness, Need and implications of automation in Manufacturing.
Unit - II	Introduction to Hydraulics/Pneumatics Electro-pneumatic controls and devices, Basic elements hydraulics/pneumatics, Electro-pneumatic systems, Fluid power control elements and standard graphical symbols for them, Construction and performance of fluid power generators, Hydraulic & pneumatic cylinders - construction, design and mounting, Hydraulic & pneumatic valves for pressure, Flow & direction control, Servo valves and simple servo systems with mechanical feedback, Solenoid, Different sensors for electro-pneumatic system, hydraulic, pneumatic & electro-pneumatic circuits.

Unit - III	Introduction to rapid prototyping (RP), Basic Principles of RP, Steps in RP, Advantages of RP, Classifications of Different RP Techniques. Materials for RP: Plastics, Ceramics, Resins, Metals, Selection criterions for materials for different processes, the advantages and limitations of different types of materials.
Unit - IV	Automatic transfer machines: Classifications, Analysis of automated transfer lines, without and with buffer storage, Group technology and flexible manufacturing system. Assembly automation: Types of assembly systems, Assembly line balancing, Performance and economics of assembly system.

- 1. Groover, M. P., "Automation, Production systems and Computer Integrated Manufacturing", 2nd Ed., Prentice Hall, 2005.
- 2. Boothroyd, G., "Assembly Automation and Product Design", 2nd Ed., Marcel Dekker, 1992.
- 3. Boothroyd, G., Dewhurst, P. and Knight, W., "Product Design for Manufacture and Assembly", 2nd Ed., Taylor & Francis, 2002.
- 4. Boothroyd, G., Poli, C. and Murch, L. E., "Automatic Assembly", Marcel Dekker, 1982.
- 5. Tergan, V., Andreev, I. and Lieberman, B., "Fundamentals of Industrial Automation", Mir Publishers, 1986.

MTech/ME/1/CC4:CNC Technology and Programming											
Course Type	1		Delivery	Maximu	m Marks	Exam	Assessment				
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance				

Instructions to paper setter for Final Term Examination: Final Term examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives:

- To understand fundamentals of the CNC technology.
- To understand the programming methods in CNC machines.

Course Outcomes At the end of this course, the student will be able to:
--

CO1														
CO2	CO2 Write CNC programs proficiently.													
	CO	D-PO N	lappi	ng Mat	rix for	Course	e MTecl	n/ME/1	/CC4					
COs	PO1													
CO1	3	2	3	2	3	2	1	-	-	-	-	-		
CO2	3	3 3 3 3 3 2 1 1 1												
Average	3	3 2.5 3 2.5 3 2 1 0.5												
Unit- I	MTech/ME/1/CC4: CNC Technology and Programming Computer numerical control machining: Axis standards, Coordinate systems, CNC machine motions. CNC hardware basics: Structure, Drives, Actuation systems, Sensors and Feedback devices.													
Unit - II														
	Funda	mentals	and pr	ogramm	ing of (CNC tur	ning cent	ter and C	CNC mac	chining o	center, P	roblems.		
Unit - III														
Unit - IV												ing system rk holding.		

- Jon S. Stenerson, Kelly Curran, "Computer Numerical Control: Operation and Programming", 1. Prentice Hall, 3rd edition 2007.

Mattson Mike, "CNC Programming: Principles & Applications", Cengage learning, 1st edition 2013.
 Fitzpatrick, "Machining and CNC Technology", McGraw-Hill Higher Education, 3rd edition 2013.
 Michael J. Peterson, "CNC Programming: Basics & Tutorial Textbook", Create Space Independent Publishing Platform, 1st edition 2008.
 Peter Smid, "CNC Tips and Techniques: A Reader for Programmers", Industrial Press Inc., 1st edition 2013.

	MTech/ME/1/CC5:Total Quality Management												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance						

Instructions to paper setter for Final Term Examination: Final Term examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives:

- To understand the basic concepts of quality.
- To understand the continuous process improvement & benchmarking.
- To understand the concept of statistical quality control & application of control charts.

Course Outcomes	At the end of this course, the student will be able to:
CO1	Students will be able to understand various quality related terms commonly used in industries.
CO2	Student will be to understand the continuous process improvement & benchmarking .
CO3	Each student understands the concept of statistical quality control & application of control charts and will be able to solve problems based on them.

CO-PO Mapping Matrix for Course MTech/ME/1/CC5

	U		ւսիհա	ig mati		course	WI ICCII		CCJ			
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	P012
CO1	3	2	2	3	2	1	1	1	2	-	-	-
CO2	3	2	3	2	3	3	2	1	2	1	1	1
CO3	3	3	3	2	3	1	1	-	1	1	-	-
Average	3	2.33	2.66	2.33	2.66	1.66	1.33	0.66	1.66	0.66	0.33	0.33

Course Content MTech/ME/1/CC5: Total Quality Management

Unit- I	Introduction : Definition, Basic Approach, Guru's of TQM, Defining Quality, Historical Review. Leadership: Definitions, Characteristics of Quality Leaders, Leadership Concepts, Seven habits of highly effective people, The Deming Philosophy, Role of TQM Leaders, Implementation, Quality Council, Core values, Concepts and Framework, Strategic planning, Communications
Unit - II	Customer Satisfaction and Employee Involvement : Introduction, Customer perception of Quality, Feedback, Using Customer Complaints, Service Quality, Translating Needs into Requirement, Customer Retention, Motivation, Employee Surveys, Empowerment, Suggestion

	System, Recognition and Reward, Gain sharing, Performance Appraisal, Unions and Employee Involvements, Benefits of Employee Involvement
Unit - III	 Continuous Process Improvement and Benchmarking: Process, The Juran Trilogy, Improvement Strategies, PDSA Cycle, Kaizen, Re-engineering, Six Sigma. Benchmarking: Definition, Reasons to benchmark, Understanding current Performance, Planning, Pitfalls and Criticisms of Benchmarking Tools and Techniques: Information Technology, Computers and the Quality Function, Internet and Electronic Media, Technologies of the Future. Quality Management System: ISO, benefits of Registration, Sector Specific Standards, Documentation, Internal Audits. Environmental Management System: ISO 14000, Requirements of ISO 14000
Unit - IV	Failure Mode and Effect Analysis : Reliability, Failure Rate, FMEA: Team and Documentation, Stages of FMEA, Design and Process of FMEA, Products Liability: Product Safety Law, Products Liability Law, Statistical Process Control: Cause and Effect Diagram, Process Capability, Control Charts for Attributes. Experimental Design: Hypothesis, t Test, F Test, Orthogonal Design

- 1. Besterfield Dale H., "Total Quality Management", Pearson Education.
- 2. N Logothetis, "Managing for total quality from Deming to Taguchi and SPC", Prentice Hall.
- Feigenbaum AV, "Total Quality Control", McGraw Hill.
 Sharma DD, "Total Quality Mangement ", Sultan Chand & Sons
- 5. Gilbert John, "A slice by slice guide to TQM", Affiliated East West Press.

MTech/ME/1/CC6: Advanced Mechanics of Solids Lab											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment Methods				
	Credit	Hours/Week	Mode	External	Internal	Duration					
Practical	02	04	Lab Work			TEE/ Practical File					
of internal and ext	Instructions to paper setter for Final Term Examination: Final Term Examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.										
Course Objectives:	To predict t	he behaviour of t	he solid bodies	subjected to va	arious types o	f loading.					
Course Outcon	nes At th	ne end of this co	ourse, the stude	ent will be ab	le to:						
CO1 Predict the behaviour of the solid bodies subjected to various types of loading.											

CO2	Desig	n machi	ne eler	ments usi	ing theor	ries of c	leformat	ole bodie	es.			
CO3	Select	t materia	al in en	gineering	g applic	ations b	ased upo	on exper	imental o	lata.		
	CO)-PO N	/appi	ng Mati	rix for (Course	MTech	n/ME/1	/CC6			
COs	POI	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	P010	P011	P012
CO1	3	3	3	3	2	1	1	1	-	-	1	-
CO2	3	3	3	3	2	1	-	1	-	-	-	-
CO3	3	2	3	2	3	2	2	1	-	-	1	-
Average	3	2.66	3	2.66	2.33	1.33	1	1	-	-	0.66	-
Experiment-1	List of Experiments MTech/ME/1/CC6: Advanced Mechanics of Solids Lab Experiment-1 To perform uniaxial tension and compression tests for ductile and brittle materials, compare stress-strain curves for ductile and brittle materials, verify failure criterions for ductile and brittle materials and find out reasons of erratic failure, if any.											
Experiment-2				ests for d find out 1					y failure	criterio	ns for du	ictile and
Experiment-3		ed expe										terpret the ngineering
Experiment-4	Priment-4 To understand principle of fatigue testing machine in a reverse loading manner and to find the endurance limit of the given specimen on Fatigue Testing Machine. To construct an S-N curve (stress level - number of cycles to failure) of the test samples provided and interpret the obtained experimental results and use them as a tool for material selection in engineering applications.											
Experiment-5		-structur										e different study their

	MTech/ME/1/CC7: CNC Technology and Programming Lab												
Course Type			Maximu	m Marks	Exam	Assessment							
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File						

Instructions to paper setter for Final Term Examination: Final Term Examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives:

•To understand and operate CNC machines.

•To create manual part programming on CNC machines.

Course Outcomes	At the end of this course, the student will be able to:

CO1	Manu	ally wri	te, edit	, debug,	and use	CNC pr	ograms t	to produ	ce parts/	products	8	
	CO-PO Mapping Matrix for Course MTech/ME/1/CC7											
COs	PO1	P02 P03 P04 P05 P06 P06 P06 P06 P06 P06 P07 P07 P010 P010 P010									P012	
CO1	3	3	3	3	3	2	1	1	-	-	1	-
Average	3	3	3	3	3	2	1	1	-	-	1	-
List of Experiments MTech/ME/1/CC7: CNC Technology and Programming Lab Experiment-1 To perform basic setup, startup, and safely features in CNC turning, machining and wire-cut EDM machine tools.												
Experiment-2				utters, cu er accore					er paran	neters of	CNC tu	rning,
Experiment-3				ls and pa f tool and		ng devic	es in CN	C turnir	ng, CNC	machini	ng cente	er for
Experiment-4				t program nd wire-c					simulate	the tool	-path on	CNC
Experiment-5	-	erate CN e actual		ing cente ning.	er, mach	ining ce	enter and	wire-cu	t EDM.	Load a p	program	and

SEMESTER – II

			MTe	ch/MI			nced M	achine	e Design]
Course Type	Col	urse		ntact	1	livery			n Marks	F	Exam	Ass	essment
Course Type		edit		s/Week		lode	Exte		Internal		uration		ethods
Compulsory Theory	0)4	0)4	Leo	cture	70	0	30	3	Hours	Assig	E/MTE/ nment(s)/ endance
Instructions to p content of the cour be consisting of sl there shall be four from each unit in a Course Objectives: • To understand fatigue and o	rse. To hort/ol units additio the cor	otal num bjectiv in the on to co	imber of ve type questio ompulso	of quest questic on pape ory que	tions sha ons fron er each c estion. A	all be ni n comp consisti All ques	ine. Qu olete syl ing of tw stions w	estion llabus. wo que vill carr	number o In additi estions. St y equal n	one wil on to c tudent y narks.	l be con compuls will atte	npulsor ory firs empt on	y and will t question e question
	-	At th	- and a	fthis (ourse, tl	ha atud	+ will	ba abl	- +				
Course Outcon CO1	nes								e to: etics, ergo	nomics.	, fatigue	and cree	ep.
<u></u> 							•		h/ME/2/0		<u> </u>		
COs	i)-r o m	<u>1ahhm</u>	1g 1v1au		_0ui sc		ן <i>עב</i> ו ענו 10/ 10 א 				
		POI	P02	PO3	P04	PO5	P06	PO7	P08	P09	PO10	P011	P012
CO1		3	3	3	3	3	3	2	1	-	-	1	1
Average		3	3	3	3	3	3	2	1	-	-	1	1
			МТе	ch/MF		urse Co : Adva		Iachin	e Design		<u> </u>	<u> </u>	
Unit- I		produc concep freque	ct design pt testing ency poly	n planni 1g. Statis 1ygon, N	ing and s stical des Normal di	specifica sign cons istributio	ation, neo sideratio on, Unit	ed analy ons: Fre as of mea	design ph ysis, conce equency di easurement ns, Desigr	ept gene stribution t of cent	eration, c on, Histo tral tende	oncept s ogram an ency and	selection, d
Unit - II									considerati		lesign fo	r casting	g, forging,
Unit - III	Unit - IIIDesign for aesthetics and ergonomics: Aesthetics considerations in design-Basic types of product forms, designing for appearance –shape, features, materials and finishes, Ergonomic considerations in design display and controls, workspace design, hand tool design, human engineering considerations-Relation between man, machine and environmental factors, Optimum Product Design: Objective of optimum design, Johnson's method of Optimum Design (MOD), Optimum design with normal specification of simple machine elements.												
Unit - IV		strengt	th and l	life, cre	eep: Typ	bes of st	tress vai	riation,		or fluctu	ating st	resses, c	or fatigue lesign for damage,

- 1. Richard G Budynas and Keith J Nisbett, "Shigley's Mechanical Engineering Design", McGraw-Hill Higher Education, 10th edition, 2014.
- 2. Bhandari V., "Design of machine Elements", McGraw Hill Education (India) Private Limited, 3rd edition, 2010.
- 3. William C. Orthwein, "Machine Component Design: v. 1 & 2", Jaico Publishing House, New Ed edition, 2006.
- 4. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Components Design", Wiley, 5th edition, 2011.
- 5. Hall A. S., Holowenko A. R. and Laughlin H. G, "Theory and problems of Machine Design", Schaum, 1981.
- 6. Johnson R. C, "Mechanical Design Synthesis with optimization applications", Van Nostrand Reinhold Company, 1st edition 1971. Harry Peck, "Design for Manufacture", Pittman Publication, 1983.
- 7.
- 8. Robert Matousek, "Engineering Design A systematic approach", Blackie & sons Ltd., 1963

Blackie & Son Ltd, 1972.

9. James G. Bralla, "Design for Manufacturability Handbook", McGraw Hill Co., 2 edition 1998.

10. K. G Swift, "Knowledge based design for manufacture", Kogan Page Ltd., 1987.

11. Penny R.K. And Marriott D. L., "Design for Creep", 2nd edition 1995.

	MTech/ME/2/CC9:Computer Aided Design and Manufacturing										
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment				
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Compulsory Theory	04	04	Lecture	70	70 30		TEE/MTE/ Assignment(s)/ Attendance				
Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question											

there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives:

•To understand the basic parametric fundamentals that are used to create and manipulate geometric models.

Course Outcomes	At the end of this course, the student will be able to:
CO1	Create the different wireframe and surface primitives using parametric modeling.
CO2	Create the different solid primitives using the different representation schemes.
CO3	Manipulate the created wireframe, surface and solid models.

CO-PO Mapping Matrix for Course MTech/ME/2/CC9

COs	PO1	P02	PO3	P04	PO5	PO6	P07	PO8	P09	P010	P011	P012
CO1	3	3	3	3	2	1	1	1	-	-	-	1
CO2	3	3	3	3	2	1	1	-	-	-	-	1
CO3	3	3	3	3	2	1	1	-	-	-	1	1
Average	3	3	3	3	2	1	1	0.33	-	-	0.33	1

Course Content	
MTech/ME/2/CC9: Computer Aided Design and Manufacturing	

Unit- I	Introduction: Definition and scope of CAD/CAM, Introduction to design process and role of computers in the design process. Transformations: 2D and 3D transformations.
Unit - II	 Curves and Surfaces: Analytical, Synthetic curves with advantages, Disadvantages, Comparison with parametric curves, Geometric modeling curves and surfaces, Representation, Wire frame models, Parametric representations, Parametric curves and surfaces. Solid modeling: Solid models, Fundamentals of solid modeling, Different solid representation schemes, Half -spaces, Boundary representation (B-rep), Constructive solid geometry (CSG).
Unit - III	CAD/CAM Data Exchange Formats: Types of file formats & their exchange, Graphics standards. Simulation: Need of simulation , concept of a system, Model and its purpose , Types of simulation approaches- Event Scheduling Approach (ESA) , Activity Scanning Approach (ASA), Process Interaction Approach (PI A), Steps in a simulation study , advantages/ disadvantages and pitfalls of simulation.
Unit - IV	 Computer Aided Manufacturing : CNC machine tools, principle of operation of CNC, Steps in manufacturing , construction features including structure and drives, Direct numerical control (DNC) and its application, advantages and limitations of CNC systems. Computer Assisted Part Programming: CNC part programming, axes of CNC machines, manual part programming using G code, use of subroutines, computer aided part programming using APT or any other language, Automatic NC program generation from CAD models, Machining of surfaces, Mould, Casting and Die design and manufacture using CAD/CAM software.

Text/Reference Books

- 1. Zeid, I., "CAD/CAM", McGraw Hill, 2008.
- 2. Rogers, D. F. and Adams, J. A., "Mathematical Elements for Computer Graphics", McGraw Hill 2nd edition, 1989.
- 3. Radhakrishnan, P. and Kothandaraman, C. P., "Computer Graphics & Design", Dhanpat Rai Publication",

2nd edition, 2005.

- 4. Krishnamoorathy, C. S. and Rajeev, J. S., "Computer Aided Design (Software and Analysis Tools)",
- 5. Narosa Publication House, 2nd edition, 2005.

	MTech/ME/2/CC10 : Casting and Welding Technology														
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment								
	Credit Hours/Week		Mode	External	Internal	Duration	Methods								
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance								

Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives:

- •To study the metallurgical concepts and applications of casting and welding process.
- To impart the knowledge of joining different metallic and non-metallic materials.

Course Outcomes	At the end of this course, the student will be able to:
CO1	Model the solidification process of castings.
CO2	Evaluate the suitability of various casting processes for a product.
CO3	Analyze the influence of process parameters on the quality of weld.
CO4	Select appropriate advanced techniques for aerospace, nuclear, automobile and naval applications.
	CO-PO Mapping Matrix for Course MTech/ME/2/CC10

	1	1	1	1	ĺ	1	1	1	1	1	1			
COs	PO1	PO2	P03	P04	PO5	PO6	PO7	PO8	P09	P010	P011	P012		
CO1	3	3	3	2	3	1	1	1	-	-	-	1		
CO2	3	2	2	3	2	1	2	1	-	-	-	1		
CO3	3	3 3 2 2 1 1 1 1 1												
CO4	3	2	2	2	1	1	1	1	-	-	1	1		
Average	3	3 2.5 2.25 2.25 1.75 1 1.25 0.75 0.5 1												
Unit- I	MTech/ME/2/CC10 : Casting and Welding Technology													
Unit- I	Unit- I Casting Design and Metallurgy: Heat transfer between metal and mold, Design considerations													
	Recent Trends in Casting and Foundry Layout : Review and critical comparison of various established processes; recent developments e.g. flask less molding, hot and cold box molding; ceramic shell molding; V process; continuous casting; squeeze and pressed casting; Nishiyama process; Shaw process; Anitoch process etc.													
Unit - II	Arc co power	olumn, ' sources	Thermi s for va	onic and	d non- t c weldir	hermior	nic catho	de, arc	characte	eristics,	Charact	ode drops, eristics of d welding		
	variou		elding p									ransfer in esses, Arc		
Unit - III	Recent Trends in Welding : Surfacing and Hot facing in welding, Friction welding, friction stir welding, diffusion bonding, ultrasonic welding, electron beam welding, Laser beam welding, Plasma welding, hybrid twin wire active TIG – Tandem, MIG.													
Unit - IV	Implan Metal Stainle	nt test, C lurgy o f	Dblique f Weld l, Weld	Y – Gro ing : Car ling of	ove test rbon equ	(Tekke	en Test)- welding	Weld r	nechanic on and l	cal testin ow alloy	g. v steel, V	croft test, Velding of bys, Weld		

- 1. John K. C, (2015), "Metal Casting and Joining", PHI Learning, New Delhi
- 2.
- Khanna OP, "A Text Book of Foundry Technology", Dhanpat Rai Publications Bowditch, W.A., Bowditch M. A., Bowditch, K. E., (2006), "Welding Technology Fundamentals", 3. Goodheart -Willcox Pub., 4th Edition
- 4. O'Brien, (2004), "Welding Handbook: Welding Processes", Part 1, Vol. 2, American Welding
- 5. Pramar RS, "Welding Engineering and Technolgy", Khanna Publisher

		N	/ITech/	'ME/2/0	CC11 :	Tool E	nginee	ering					
Course Type	Course	Con			livery		-	n Marks	I	Exam	Ass	essment	
	Credit	Hours	/Week	Μ	lode	Exte	rnal	Interna	1 Du	uration	Μ	ethods	
Compulsory Theory	04	0	4	Lee	cture	7	0	30	3	Hours	Assig	E/MTE/ nment(s)/ endance	
Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question here shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.													
 Course Objectives: To understand the mechanics of various advanced machining processes including the material removal, tool design, effect of process parameters on the output responses. To impart depth knowledge on principle involved, accuracy involved, tooling requirement and knowledge about the process capability. To develop knowledge and skills design of various jigs and fixtures to increase the production rate. 													
Course Outcon	nes At th	e end o	f this c	ourse, t	he stude	ent will	be abl	e to:					
CO1								hining pro n the outp			g the man	terial	
CO2	Impa	rt depth	knowle	dge on p		involve		racy invo			uiremen	t and	
CO3							ous jigs	and fixtu	res to in	crease th	ne produ	ction	
	CC)-PO M	appin	g Matr	ix for C	Course	MTecł	n/ME/2/(CC11				
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	P010	P011	P012	
CO1	3	2	2	2	2	1	1	1		-	1	1	
CO2	3	2	2	2	1	1	1	1	-	-	-	1	
CO3	3	2	2	3	2	1	1	1	1	-	-	2	
Average	3	2	2	2.33	1.66	1	1	1	0.33	-	0.33	1.33	

	Course Content MTech/ME/2/CC11 : Tool Engineering
Unit- I	 Cutting Tool Materials: Introduction and Desirable Properties, Carbon and Medium-Alloy Steels, High-Speed Steels, Cast-Cobalt Alloys, Carbides, Coated Tools, Alumina-Based Ceramics, Cubic Boron Nitride, Silicon-Nitride Based Ceramics, Diamond, Reinforced Tool Materials, Cutting-Tool Reconditioning Design of Cutting Tools: Basic Requirements, Mechanics and Geometry of Chip Formation, General Considerations for Metal Cutting, Design of Single Point Cutting Tools, Design of Milling Cutters, Design of Drills and Drilling, Design of Reamers, Design of Taps
Unit - II	Gages and Gage Design: Limits Fits and Tolerances, Geometrical Tolerances-Specification and Measurement, Types of Gages, Gage Design, Gage Tolerances, Material for Gages Work Holding Devices: Basic Requirements of Work Holding Devices, Location: Principles, Methods and Devices, Clamping: Principles, Methods and Devices
Unit - III	Design of Drill Jigs : Definition and Types of Drill Jigs, Chip Formation in Drilling, Design of Fixtures : Fixtures and Economics, Types of Fixtures, Milling Fixtures, Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding Fixtures
Unit - IV	 Design of Sheet Metal Bending, Forming and Drawing Dies, Bending Dies, Forming Dies, Drawing Operations, Variables that Affect Metal Flow during Drawing, Determining Blank Size, Drawing Force, Single and Double Action Draw Dies. Tool Design for Numerically Controlled Machine Tools: Fixture Design for Numerically Controlled Machine Tools, Cutting Tools for Numerical Control, Tool-Holding Methods for Numerical Control.

- 1. Mehta, N. K., "Metal Cutting and Design of Cutting Tools, Jigs & Fixtures", McGraw Hill Education (India) Private Limited, 2014.
- 2. Cyril Donaldson, George H LeCain, Goold V.C., Joyjeet Ghose, "Tool Design", Tata-McGraw Hill, 2012.
- 3. Jeff Lantrip, John G. Nee, David Alkire Smith, "Fundamentals of Tool Design", Society of Manufacturing Engineers, 2003.
- 4. Jones E.J.H., Town H.C., "Production Engineering: Jig and Tool Design", Butterworth and Co (Publishers) Ltd, 2009.
- 5. Maurice Henry Albert Kempster, "An Introduction to Jig and Tool Design', Maurice Henry Albert Kempster, English Universities Press, 1964.

MTech/ME/2/DSC1(i) : Modern Manufacturing Processes

Course Type	Course	Con			ivery	Ма	aximun	n Marks		Exam		essment	
	Credit	Hours	Week	M	ode	Exte	rnal	Interna		uration	Μ	ethods	
Optional Theory	04	0	4	Leo	cture	70	C	30	3	Hours	Assig	E/MTE/ nment(s)/ endance	
Instructions to pa content of the cour be consisting of sh there shall be four from each unit in a	rse. Total nu nort/objectiv units in the	imber of ve type questio	f quest questic n pape	ions sha ons fror r each o	all be n n comp consisti	ine. Qu lete syl ng of tv	estion i labus. vo ques	number o In additi stions. St	one wil on to c tudent	l be con compuls	npulsor ory firs	y and will at question	
Course Objectives: • To teach the fu • To provide knome machining, h	ndamentals a wledge in ap	and adva	nces in pects of	modern moderr	machini machiri	ing proc	esses cesses v	-		achining	, non-tra	aditional	
Course Outcon		e end of								<u> </u>	1		
CO1						ss capab	ilities ai	nd applica	ations of	f various	modern	1	
CO2	machining/finishing processesAnalyse the inter-relationship between the process parameters and machining performancessuch as cutting forces, tool wear, material removal rate and surface finish												
CO3		Discuss the specific characteristics and requirements of high speed machining system											
CO4 Select a suitable modern machining/finishing process for manufacturing of macro/ micro components/features													
CO-PO Mapping Matrix for Course MTech/ME/2/DSC1(i)													
COs	PO1	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	P011	P012	
CO1	3	2	3	2	3	2	2	1	-	-	1	1	
CO2	3	2	2	2	3	1	1	1	-	-	-	1	
CO3	3	2	2	2	2	1	1	1	-	-	1	1	
CO4	3	3	2	2	3	1	1	1	-	-	1	1	
Average	3	2.25	2.25	2	2.75	1.25	1.25	1	-	-	0.75	1	
	Ν	ITech/M	IE/2/DS		urse Co Moderi		facturi	ng Proces	sses				
Unit- I	detern life. High tools	nination speed n	of cutti nachini nents fo	ng force ng : Hig or HSM	es in maa h speed – Cutt	chining machin ing tool	- Therm ing (HS s for F	al aspects SM) – Cl ISM – D	s of mac	chining, t istics of	tool wea HSM –	heoretical ar and tool - Machine M – Tool	
Unit - II	Ultras		chining	g – wor	king pr	inciple,	machin					achining - parametric	
												discharge nachining	

	system, process variables, parametric analysis, process capabilities and applications.
Unit - III	 Hybrid machining processes: Vibration assisted machining – Electro chemical grinding – Electro chemical honing –Electrical discharge grinding – Electro chemical discharge grinding - Thermal assisted machining. Micromachining processes: Introduction to microfabrication, Diamond micro-machining, ultrasonic micromachining, micro-EDM, micro-ECM laser beam micro-machining, electron beam micromachining and focused ion-beam techniques.
Unit - IV	Advanced Finishing Processes: Abrasive flow finishing, Magnetic abrasive finishing, Magneto rheological finishing and chemical mechanical finishing - working principle, machine tool set up, process variables, process performance and applications.

- 1. Jain V.K, (2010), Introduction to Micromachining, Narosa Publishers
- 2. J Paulo Davim (2011), Modern Machining Technology: A Practical Guide, Woodhead Publishing, USA
- 3. Hassan Abdel-Gawad El-Hofy (2014), Fundamentals of Machining Processes: Conventional and Nonconventional Processes, CRC Press, Taylor & Francis Group, USA

	MTech/ME/2/DSC1(ii) : Instrumentation and Measuring Systems														
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment								
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods								
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance								

Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives: The course is intended to give students a thorough understanding of a measuring system, different transduction principles, error analysis response etc. and various other issues related to instrumentation system.

Course Outcomes	At th	e end o	f this c	course t	he stud	ent wil	l he able	to.						
CO1		At the end of this course, the student will be able to: Describe the operation of transducers for strain, acceleration, pressure, temperature, and												
	fluid flow measurement Select and assemble the components of basic analog and digital data acquisition systems.													
CO2 CO3		Apply theoretical analysis of time-varying signals to selection of signal conditioning												
	components.													
	CO-]	PO Ma	pping	Matrix	for Co	ourse N	ITech/N	/IE/2/D	SC1(ii)	1	1			
COs	PO1	P02	PO3	P04	PO5	PO6	PO7	P08	P09	P010	P011	P012		
CO1	3	2	3	2	3	1	1	1	-	-	1	1		
CO2	3	2 2 3 2 1 1 1 1 1 1 1												
CO3	3													
Average	3	2.33	2.33	2.33	2.33	1	1	1	0.33	0.33	1	1		
Course Content MTech/ME/2/DSC1(ii) : Instrumentation and Measuring Systems														
Unit- I	system config for int Chara Static static terms	 Generalized Configuration of Measuring System: Functional elements of a basic measuring system; different types of measurands, description of functional elements. Input-output configuration of a measuring system interfering and modifying inputs; methods for correction for interfering and modifying inputs. Characteristics of Instruments: Objective of studying the characteristics of the instruments. Static characteristics accuracy precision, error, sensitivity, hysterisis, threshold, drift, span, static stiffness etc. Dynamic characteristics - time domain and frequency domain characteristics terms input-output impedance's and meaning of impedance mismatching. Concept of mechanical loading. 												
Unit - II	of a m of step system	easuren p, ramp n.	and s	stem. Or inusoida	der of th 1 inputs	e syste: . Trans	ms, respo fer funct	onse of z tion me	zero, first	and sec study th	ond ord e respo	nfiguration er systems nse of the al data.		
Unit - III	princip and pi gauges	ples. Tra ezo-elec	ansduce ctric eff gage o	ers base fects. Di	d on va splacem	riable r ent trar	esistance Isducers	e, variat - wire v	ole induc vound po	tance, v	ariable eters, L	ransduction capacitance VDT, strain nd pass and		
	acquis	DAS and Signal Analysis : Data acquisition system via computers. The components of Data acquisition system, DAS Hardware, selection criteria for choosing a DAS. Techniques for signal analysis.												
Unit - IV	techni	ques; F	Pitot st		bes; ho			U				ferometric eter; flow		
	sensor		nistors;	radiatio								resistance ving fluids,		

- 1. Doeblin E. O., "Measurements System Application and Design", 5th Ed., McGraw Hill, 2004.
- 2. Trietly Harry L., Dekker Marcel, "Transducers in Mechanical and Electronic Design", Ist Ed., CRC Press, 1986.
- 3. Beckwith T. G., Marangoni R. D., and Lienhard J. H., "Mechanical Measurements", 6th Ed., Prentice Hall, 2006.
- 4. Eckert E. R. G. and Goldstein R. J., "Measurements in Heat Transfer", 2nd Ed., Springer, 1986.

	МТ	Tech/ME/2/DSC	l(iii) : Manufa	cturing Inform	mation Syste	ms					
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment				
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance				
 Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks. Course Objectives: To provide an importance of databases and its application in manufacturing systems that prepare students for their engineering practice by organization by conversant with order policies, data base terminologies, designing, manufacturing considerations. Define and explain basic terms in the area of manufacturing, as well as structure, design, configuration and practical use of IT systems for manufacturing. To provide specialist knowledge in the area of manufacturing information systems, as an upgrade of the basic knowledge about information systems provided in the core courses. 											
Course Outcom		ne end of this co									
CO1	manu	To create simple to moderately complex manufacturing information system for manufacturing industry									
CO2	Evalu	uate critically the	role of manage	ment informat	ion systems f	or design, eng	gineering and				

CO3

organization

Demonstrate an appreciation of the complex relationship between information systems and

CO4	Expla	in syste	m analy	ysis and	design to	ools						
CO-PO Mapping Matrix for Course MTech/ME/2/DSC1(iii)												
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	P010	P011	P012
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	3	3	2	2	1	1	1	1	1	1	1
CO3	3	2	2	2	2	1	1	1	-	2	1	1
CO4	2	2	2	2	3	1	1	1	1	1	1	1
Average	2.75	2.25	2.25	2	2.25	1	1	1	0.75	1.25	1	1
Unit- I Unit - II	Manag to MIS MIS as Inform Admir Decisi Inform Teleco	gement 1 S - Info s an inst nation, 1 nistrative on Mak nation	Informa rmatior rument Manage and I ing - Ty Techn cation a	n as a stit t for the e ement a Herbert ypes of i	stems: N rategic r organiza nd Deci Simon's nformat Definitio works -	leed, Pu esource tional c sion M Models ion on, IT Types a	rpose ar - Use o hange aking: 1 s - Attri Capabil und Topo	nd Object of inform Models butes of lities ar ologies of	ctives - (nation fo of Deci f informand their	or composition Mathematical Mat	aking - d its re zational	pproaches dvantage - Classical, levance to impact - ed services
	Data I	Base Ma	anagen	nent Sys	tems: D	ata War	ehousin	g and Da	ata Minii	ng		
Unit - III	Unit - IIISystems Analysis and Design: Systems Development Life Cycle - Alternative System Building Approaches - Prototyping - Rapid Development Tools - CASE Tools – Object Oriented System (Only introduction to these tools &techniques)Decision Support Systems: Group Decision Support Systems - Executive Information Systems Executive Support Systems - Expert Systems and Knowledge Based Expert Systems - Artificia Intelligence											n Systems -
Unit - IV	and So	ocial Di	mensio		ellectual	Propert						e -Ethical Products -

1. Jawadekar, (2013) Management Information Systems, Tata McGraw Hill, 5th Edition

2. Laudon and Laudon, (2011), Management Information Systems, 12th Edition, Pearson Education Asia

3. Rajaraman, (2011), Analysis and Design of Information Systems, Prentice Hall, 3rd Edition

4. Turban and Aronson,(2010), Decision Support Systems and Intelligent Systems, Pearson Education Asia

	MTech/M	E/2/CC	212: Co	ompute	r Aide	d Desig	n and	Manufa	octuring	g Lab			
Course Type	Course	Con		Deliver	ivery	Maximum Marks]	Exam		Assessment	
	Credit	Hours/Week		M	Mode		External Internal		al D	Duration		Methods	
Practical	02	04	4	Lab V	Lab Work		0	-		Hours	TEE	TEE/ Practical File	
Instructions to par of internal and ext practical and a viva	ernal exam	niners. E										• 1	
Course Objectives: • To use professio • To learn advance				•	•	s and co	mputer	assisted	manufac	cturing.			
Course Outcom													
CO1		Use parametric CAD software(s) for geometric modelling, analysis and computer assisted manufacturing of mechanical components											
CO2	Manu	Manually write, edit, debug, and use CNC programs to produce complex profiles on CNC machines.											
CO-PO Mapping Matrix for Course MTech/ME/2/CC12													
COs	POI	P02	PO3	P04	PO5	PO6	P07	PO8	P09	PO10	P011	P012	
CO1	3	3	3	2	3	2	1	1	-	1	1	1	
CO2	3	3	2	2	2	1	1	1	-	-	1	2	
Average 3		3	2.5	2	2.5	1.5	1	1	-	0.5	1	1.5	
List of Experiments MTech/ME/2/CC12: Computer Aided Design and Manufacturing Lab													
Experiment-1 Practicing the part modeling, assembly and simulation operations on available CAD package(s).											ackage(s).		
Experiment-2		Generating automatic Cutter Location (CL) data from CAD models and post processing for machining on CNC machines.											
Experiment-3	Produ	Producing complex cylindrical shaped piece on CNC machining center.											
Experiment-4	3-D v	3-D virtual machining on offline CNC machining center.											
Experiment-5	Creating radial and axial surface profiles by using C-axis and driven tools on CNC turning												

	center.
Experiment-6	Manufacturing parts on CNC machining center with WinNC/ Other available software.
Experiment-7	Fabrication of 3-D physical part using additive manufacturing technology from 3-D CAD model.
Experiment-8	Simulate a complex part model & analyze with available CAM software.

							<u> </u>]	
MTech/ME/2/CC13: Casting and Welding Technology Lab													
Course Type	Course Credit		Contact Hours/Week		Delivery Mode		Maximum Marks			Exam uration		Assessment Methods	
	Cituit	TIOUIS/ WEEK		141			ernal	Interna	ıl D	uration	wichious		
Practical	02	02 04		Lab V	Lab Work		0	-	3	Hours		TEE/ Practical	
	L											File	
Instructions to pa of internal and ext practical and a viva	ternal exan	niners. E											
Course Objectives: To provide practical knowledge in advances casting & welding processes & understand the industrial applications of these processes in different conditions.													
Course Outcomes At the end of this course, the student will be able to:													
CO1	Desi	Design welding and casting systems and quality control of components											
CO2	Und	Understand the industrial applications of welding & casting processes in different conditions.											
	C(J-PO M	lappin	g Matr	ix for (Course	MTech	n/ME/2/0	CC13				
COs		T	'										
	POI	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	P010	P011	P012	
CO1	3	2	3	3	2	1	2	1	1	-	1	1	
CO2	3	3	2	2	2	1	1	1	-	-	1	1	
Average	3	2.5	2.5	2.5	2	1	1.5	1	0.5	-	1	1	
List of Experiments MTech/ME/2/CC13: Casting and Welding Technology Lab													
Experiment-1Study Sand Testing, Green sand moulding , Shell Moulding, Vacuum Moulding, NDT of castings, along with Design of gating systems.											of		
Experiment-2	Meas	Measurement of fluidity, melting and casting of aluminium alloy castings.											
Experiment-3	, Study	Study of various Advanced Casting Processes used in industries.											
Experiment-4	Study	Study Heat flow in Welding (Equipment for use-Gas Welding equipment).											
Experiment-5	Effec	Effect of shielding gases on performance of GMAW process.											
Experiment-6		Dye-penetrant inspection for determining surface defects & Ultrasonic inspection for assessing sub-surface defects in welding joints.											

SEMESTER – III

MTech/ME/3/CC14 : Tribology											
Course Type	51		5		Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance				

Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives: The course has been designed to give an understanding of tribological phenomena, industrial lubricants and additives.

Course Outcomes	At the end of this course, the student will be able to:
CO1	To understand the interdisciplinary subject 'Tribology' and its technological significance
CO2	To understand the genesis of friction and wear
CO3	To learn about the principles of lubrication, lubrication regimes, hydrodynamic lubrication and hydrostatic lubrication
CO4	To learn about emerging areas such as bio Tribology and micro/nano Tribology

CO-PO Mapping Matrix for Course MTech/ME/3/CC14

COs	POI	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012
CO1	3	2	2	2	2	1	2	1	1	-	1	1
CO2	3	2	2	2	1	1	1	-	-	-	1	1
CO3	3	2	2	2	2	1	1	1	1	-	1	1
CO4	3	2	2	1	1	1	2	1	-	-	1	1
Average	3	2	2	1.75	1.5	1	1.5	0.75	0.5	-	1	1

Course Content MTech/ME/3/CC14 : Tribology

Unit- I	 Introduction: History of Tribology, Introduction to Friction, Wear and Lubrication, economic aspects of Tribology. Friction: Laws of static friction, causes of friction, Adhesion, Adhesion theory, laws of rolling friction Wear: Wear definitions, types of wear mechanisms: Adhesive wear, Abrasive wear, Fatigue wear, impact wear, Corrosive war, Fretting wear.
Unit - II	Physical Properties of Lubricants : Introduction, Oil viscosity, Viscosity temperature relationship, Viscosity index, Viscosity pressure relationship, Viscosity-shear rate relationship, Viscosity measurements, Viscosity of mixtures, Oil viscosity classification, Lubricant density and specific gravity, Thermal properties of lubricants, Temperature characteristics of lubricants, Other lubricants characteristics, Optical properties of lubricants, Additive compatibility and solubility, Lubricant impurities and contaminants, Solubility of gases in oils.

Lubricants and Their Composition: Introduction, Mineral oils, Synthetic oils, Emulsions and aqueous lubricants, Greases, Lubricant additives.
Fluid Film Lubrication : Regimes of fluid film lubrication, Hydrodynamic Lubrication; Introduction, Generalized Reynolds equation, Converging-diverging wedges, Journal bearings, Thermal effects in bearings, Limits of hydrodynamic lubrication, Hydrodynamic lubrication with non-Newtonian fluids, Reynolds equation for squeeze films, Porous bearings. Hydrostatic Lubrication; Basic concepts, Aerostatic bearings, Hybrid bearings, Stability of journal bearings.
Bearing Materials : Selection of bearing materials, Metal bearings, Nonmetal bearing materials Future Directions in Tribology: Biotribology-basic concepts; Nanotribology-basic concepts; Environmental implications of Tribology.

- 1. Conner, J.J. and Boyd, J., "Standard Handbook of Lubrication Engineering", McGraw Hill (1968)
- 2. Khonsari, M. M. and Booser, E. R., "Applied Tribology: Bearing Design and Lubrication", 2nd Ed, Wiley (2008)
- Kudish, I. I. and Covitch, M. J., "Modeling and Analytical Methods in Tribology", Chapman and Hall/CRC (2010)
- 4. Bhushan, B., "Principles and Applications of Tribology", 2nd Ed., Wiley (2013)
- 5. Stachowiak, G.W. and Batchelor, A. W., "Engineering Tribology", 4th Ed, Butterworth-Heinemann (2013)
- 6. Wyong B., "Tribology: Engineering Applications", NY Research Press (2015)

	MT	ech/ME/3/DSC2	(i) : Smart Mol	bility and Int	elligent Vehi	cles		
Course Type	Course Contact		Delivery	Maximu	m Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External Internal		Duration	Methods	
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s) Attendance	

content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives:

- Introduce students to the various technologies and systems used to implement advanced driver assistance systems in vehicles
- Highlight impact of automation in various driving functions and connecting the automotive systems to sources of information that assist with a task.

Course Outcomes	At the end of this course, the student will be able to:
CO1	Understand the rational for and evolution of automotive electronics
CO2	Acquire knowledge on basics of how automotive ECUs function in conjunction with the vehicle data bus networks and sensors
CO3	Understand the concept of cyber-physical control systems and their application to collision avoidance and autonomous vehicles
CO4	Familiarize with the basic concepts of wireless communications and wireless data networks
CO5	Understand the fundamental principles of data networking and its roll in ADAS and future autonomous vehicles

CO-PO Mapping Matrix for Course MTech/ME/3/DSC2(i)

		r					1			r	1	
COs	PO1	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012
CO1	3	2	2	1	2	1	2	1	1	-	1	1
CO2	3	1	1	1	2	1	1	1	-	-	-	1
CO3	3	1	1	1	2	1	2	1	1	-	1	1
CO4	2	1	1	1	2	1	1	1	1	1	-	1
CO5	2	1	1	1	2	1	2	-	1	1	-	1
Average	2.6	1.2	1.2	1	2	1	1.6	0.8	0.8	0.4	0.4	1

Course Content MTech/ME/3/DSC2(i):

Unit- I	Introduction to Automated, Connected, and Intelligent Vehicles: Concept of Automotive Electronics, Electronics Overview, History & Evolution, Infotainment, Body, Chassis, and Power-train Electronics, Advanced Driver Assistance Electronic Systems								
	Connected and Autonomous Vehicle Technology : Basic Control System Theory applied to Automobiles, Overview of the Operation of ECUs, Basic Cyber-Physical System Theory and Autonomous Vehicles, Role of Surroundings Sensing Systems and Autonomy								
Unit - II	Sensor Technology for Smart Mobility: Basics of Radar Technology and Systems, Ultrasonic Sonar Systems, Lidar Sensor Technology and Systems, Camera Technology, Night Vision Technology, Other Sensors, Use of Sensor Data Fusion								
	Overview of Wireless Technology & Networking: Wireless System Block Diagram and Overview of Components, Transmission Systems –Modulation/Encoding, Receiver System Concepts–Basics of Computer Networking – the Internet of Things, Wireless Networking Fundamentals								

Unit - III	 Connected Car & Autonomous Vehicle Technology: Connectivity Fundamentals, Navigation and Other Applications, Vehicle-to-Vehicle Technology and Applications, Vehicle-to-Roadside and Vehicle-to-Infrastructure Applications, Autonomous Vehicles - Driverless Car Technology, Moral, Legal, Roadblock Issues. Advanced Driver Assistance System & Prognostics Technology: Basics of Theory of Operation, Applications, Integration of ADAS Technology into Vehicle Electronics, System Examples, Role of Sensor Data Fusion. Vehicle Prognostics Technology, Advanced Driver
Unit - IV	Assistance System Sensor Alignment and Calibration Connected Car Display: Center Console Technology, Gauge Cluster Technology, Heads-Up Display Technology, and Warning Technology – Driver Notification.
	Impaired Driver Technology: Driver Impairment, Sensor Technology Sensor Technology for Driver Impairment Detection

- 1. Radovan Miucic, Connected Vehicles: Intelligent Transportation Systems, Springer, 2015
- 2. Intelligent Transportation Systems and Connected and Automated Vehicles, Transportation
- 3. Research Board 2016
- 4. Osseiran, Afif, Jose F. Monserrat, and Patrick Marsch, eds. 5G mobile and wireless
- 5. communications technology. Cambridge University Press, 2016.
- 6. Benevolo, Clara, Renata Paola Dameri, and Beatrice D'Auria. "Smart mobility in smart city."
- 7. In Empowering Organizations, pp. 13-28. Springer, Cham, 2016.

MTech/ME/3/DSC2(ii	۱.	Sustainable Manufacturing
);	Sustainable Manufacturing

Course Type	• 1		Delivery	Maximu	m Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Optional	04	04	Lecture	70	30	3 Hours	TEE/MTE/	
Theory							Assignment(s)/	
							Attendance	

Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives:

- To provide students with knowledge of key environmental and sustainability issues relevant to modern manufacturing
- To provide a set of tools and skills that may be used to design, analyze, and improve manufacturing processes, products, and business operations.

	A (1	1	6.1.		1 4 1	11	1 11					
Course Outcomes	-			-			<u>be able</u> n lean m		turing			
CO1 CO2							sessmen			S		
CO3							work mo				process	under
		tigatior		5							1	
CO4	Lever	rage su	stainab	oility con	ncepts i	n a sup	ply chai	n.				
	CO-I	PO Ma	pping	Matrix	for Co	ourse N	ITech/N	1E/3/D	SC2(ii)			
COs	PO1											P012
CO1	3	2	1	1	2	1	2	1	_	_	1	1
CO2	2											1
CO3	2	2	2	2	2	1	2	1				
CO4	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	2	2	2	1	1	2	1	1	-	1	1
Average	2.5	2	1.75	1.75	1.75	1	1	1	0.25	-	0.5	0.75
	1			3/DSC2(tainabl	e Manuf		-			
Unit- I	pertai minin accep	ning to nize neg table pr	the stative	manufao environ	cturing mental ety – ad	sector impact option	– pres s – envir of low c	sure to ronmen	reduce tal legis	e costs slation a	– proc and ener	ntal issues cesses that rgy costs – reduce the
Unit - II	Cost reveal Enviro Susta Frame assess	and in led pre- onment inabili eworks sment –	ference al acco ty perf and	e, choic ounting f orman e techniq	approad e mode at secto ce evalu ues –	ches, c eling – or and n uators: enviro	Multi-c ational l onmenta	riteria levels l mana	analysis agement	- Stake	eholder ms –	ressed and analysis – life cycle water foot-
Unit - III	printingUnit - IIIStrategies and Design Approaches: Concepts of Competitive Strategy and Manufacturing Strategies and development of a strategic improvement programme – Manufacturing strategy in business - success Strategy formation and formulation – Structured strategy formulation – Sustainable manufacturing system design options – Approaches to strategy formulation – Realization of new strategies/system designsChallenges and Opportunities: the right supply chain strategy for the products – need to align the supply network around the strategy – Tools that can be used systematically to identify areas for improvement in supply chains – Specific challenges and new thinking in the plan, source and delivering of sub-processes											
Unit - IV	Princ	iples of	f susta		-		fe cycle operation				-	nd service city

management – Quality management –Inventory management – Just-In-Time systems – Resource efficient design – Consumerism and sustainable well-being.
Resource efficient design Consumerism and sustainable wen being.

- 1. Seliger, G,(2012), Sustainable Manufacturing: Shaping Global Value Creation, Springer
- 2. Dornfeld, David.(2012), Green Manufacturing, Springer-Verlag, New York
- 3. Davim, J.P.(2010), Sustainable Manufacturing, John Wiley & Sons.
- 4. Gupta, S.M. and Lambert, A.J.D.(2008), Environment Conscious Manufacturing, CRC Press
- 5. Douglas C.Montgomery, "Design and Analysis of Experiments", 5th Edition, John Wiley & Sons, 2012

]	MTech/M	E/3/DS	SC2(iii)	: Flexib	ole Man	ufactur	ing Syst	em			
Course Type	Credit Hours/Week Mode Duration Me											essment
	Credit	Hours/V	Week	Mo	ode	Exte	rnal	Interna	1 Du	iration	M	ethods
Optional Theory	04	04		Lec	eture	7(0	30	3	Hours	Assig	E/MTE/ nment(s)/ endance
Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks. Course Objectives: Learn the concepts and technologies associated with Flexible Manufacturing System.												
from each unit in a	addition to c	e question compulsor	n paper ry ques	r each c stion. A	consistin Il quest	ng of tw	vo ques ill carry	tions. S equal r	tudent v narks.	will atte	mpt on	
from each unit in a	addition to c	e question compulsor	n paper ry ques d techn	r each c stion. A 10logies	consistin Il quest associat	ng of tw tions with	vo ques ill carry Flexible	tions. S equal r Manufa	tudent v narks.	will atte	mpt on	
from each unit in a Course Objectives :	addition to c Learn the contract the contrac	e question compulsor	n paper ry ques d techn this co	r each c stion. A nologies ourse, th	consistin Il quest associat ne stude	ng of tw tions with ted with	vo ques ill carry Flexible be able	tions. S equal r Manufa to:	tudent v narks.	will atte	mpt on	
from each unit in a Course Objectives: Course Outcon	addition to c : Learn the co nes At th Desi	e question compulsor oncepts and ne end of t	n paper ry ques d techn this co sic Fle	r each c stion. A nologies purse, th exible M	consistin 11 quest associat ne stude Aanufac	ng of tw tions with ent will cturing	vo ques ill carry Flexible be able System	tions. S equal r e Manufa to: s	tudent v narks. acturing	will atte	mpt on	
from each unit in a Course Objectives: Course Outcon	addition to c : Learn the co nes At th Desi	e question compulsor oncepts and ne end of t gn the bas PO Mapp	n paper ry ques d techn this co sic Fle ping N	r each c stion. A nologies purse, th exible M	consistin 11 quest associat ne stude Aanufac	ng of tw tions with ent will cturing	vo ques ill carry Flexible be able System	tions. S equal r e Manufa to: s	tudent v narks. acturing	will atte	mpt on	

Average	3 3	3	3	3	1	2	1	1	1	1	1
	Course Content MTech/ME/3/DSC2(iii) : Flexible Manufacturing System										
Unit- I	Assembly manufactu	lines, 2 aring systemuting A uting A	Automa ems. utomat	ited Pr	oductio	n and Automa	Assem	ıbly liı	nes. Di	fferent	s, Manual types of ers and its
Unit - II		ring, FM	IS com	pared	to othe	r manu	facturin	ng appr			exibility in ization of
Unit - III	Distributed Industria	Numerical Control: Fundamentals of NC technology, Computer Numerical Control, Distributed Numerical Control, Applications of NC. Industrial Robotics: Robot Anatomy, Robot Control System, Sensors, Robot Accuracy and Repeatability.									
Unit - IV	Cellular M Machine C Material I Automatic	Cell desig Handling	n, Grou g and Ic	p Tech	nology.					·	

Text/Reference Books
• Mikell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", Third edition, PHI, 2009.
• Alavala Chennakesava R., "Cad/Cam: Concepts and Applications", PHI, 2008.
• Mikell P. Groover, "Automation, Production Systems, and Computer - Integrated Manufacturing", PHI, 2008

• S. Joshi , Jeffrey Smith, "Computer control of flexible manufacturing systems: Research and development", Springer; 1994.

				МТес	h/ME/3	3/CC15	: Tribo	logy La	ıb				
Course Type		urse	Con			ivery	Ma	aximum	Marks		Exam		essment
	Cre	edit	Hours	Week	M	ode	Exte	rnal	Interna	l Du	uration	М	ethods
Practical	0	2	04	4	Lab V	Work	5	50 -		3	3 Hours		Practical File
Instructions to pa of internal and expractical and a viva	ternal a voce	exam e exam	iners. E	xamir	nees wil	l be ev	aluated	on the	bases	of pract	tical file	e, perfo	ormance in
Course Objectives:					-			-		and ana	alysis of	real tim	e results.
Course Outcon	ies				ourse, t					1 1			11
CO1Predict the performance characteristics of hydrodynamic journal bearings experimentCO2Determine the behaviour of lubricants under different operating conditions.						erimenta	ally.						
CO3													
CO-PO Mapping Matrix for Course MTech/ME/3/CC15													
COs		POI	PO2	PO3	PO4	PO5	bul se	PO7	bog	60d	P010	P011	P012
CO1		3	2	2	2	2	1	2	1	1	-	-	1
CO2		3	1	1	1	1	1	1	1	_	_	_	1
CO3		3	2	2	3	1	1	1	1	-	-	-	1
Average		3	1.66	1.66	2	1.33	1	1.33	1	0.33	-	-	1
		L	I	МТес			eriment : Tribo		ıb	I	1	1	11
Experiment-1	MTech/ME/3/CC15: Tribology Lab t-1 To perform experiment on the journal bearing test rig for the measurement of Pressure and Temperature distribution in the fluid film of hydrodynamic journal bearings at different loads and speeds. To analyze the real time results obtained through data acquisition system for predicting the performance characteristics of bearing.												
Experiment-2 To perform experiment on the journal bearing test rig for investigating the fluid film thickness of hydrodynamic journal bearings at different loads and speeds. To analyze the real time results obtained through data acquisition system for predicting the performance characteristics of bearing.													
Experiment-3								-					

Experiment-4	To determine wear preventive (WP) and extreme pressure(EP) behavior of lubricants on four ball tester and to measure viscosity of lubricants with the help of viscometer . To analyze the real time results obtained through data acquisition system for predicting behavior of lubricants.
Experiment-5	To determine the friction and wear characteristics in sliding contacts under various normal loads and speeds on wear and friction monitor. To analyze the real time results obtained through data acquisition system for predicting tribological characteristics.
Experiment-6	The modeling and analysis hydrodynamic/hydrostatic bearings using software (ARMD)

	MTech/ME/3/SEC1:Dissertation Part-I with Seminar											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External Internal		Duration	Methods					
Research Work	04	04	-	-	100	-	Teacher					
							Interaction/					
							Dissertation/Viv					
							a-voce					

Instructions to paper setter for Final Term Examination: Final Term Examination will be conducted internally through synopsis presentation/seminar/viva-voce before the faculty members of the department. Each student is required to submit a detailed synopsis report about the work done on topic of Dissertation

Course Objectives:

- To identify research issue/problem on advance engineering topics related to Mechanical Engineering.
- To gain knowledge on the research problems identified through extensive literature survey.
- To understand the tools required to carry out research work.

Course Outcomes	At the	e end of	f this c	ourse, t	he stude	ent will	be able	to:				
CO1	Gain	Gain knowledge on the research problems identified through extensive literature survey										
CO2	Under	Understand professional & ethical research issues.										
CO3	Prese	Present effectively the research topic through synopsis presentation										
CO-PO Mapping Matrix for Course MTech/ME/3/SEC1												
COs	PO1	P02	PO3	PO4	PO5	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	2	2	2	2	2	2	2	2	2	3
CO2	2	2	2	2	2	2	2	3	2	2	2	3
CO3	3	3 3 3 3 3 2 3 3 2 3 2 3										
Average	2.66	2.66	2.33	2.33	2.33	2	2.33	2.66	2	2.33	2	2

Course Work MTech/ME/3/SEC1:Dissertation Part-1 with Seminar

The Dissertation work should be of research nature only. During the third semester, following must be carried out by the student:

- •Literature Survey
- Problem Formulation

Dissertation work will be started during the third semester and must be continued in fourth semester. Around 35% of the dissertation work should be completed in this semester. The remaining 65% work will be carried out in the fourth semester.

SEMESTER – IV

Course Type	Course		ntact		livery	Ma	aximun	n Marks		Exam	Ass	essment
	Credit	Hours	/Week	N	Iode	Exte	rnal	Intern	al D	uration	М	ethods
Research Work	10	0)4		-	25	50	-		-	inte Disser	eacher raction/ rtation/Vi
Instructions to participation of internal and external an												
 Ability to id Ability to p work. 	~ 1			1				5		zing the	existing	g research
Course Outcon					the stud			e to:				
Course Outcon CO1	Cont	ribute in	the Res	search a	nd Deve	lopment			oporal th	rough th	oir roso	rch
Course Outcon	Contr Upgr	ribute in ade knov	the Res	search a of scien	nd Deve tific con	lopment nmunity	and soc	iety in g		nrough th	neir resea	arch.
Course Outcon CO1 CO2	Contr Upgr	ribute in ade knov	the Res	search a of scien	nd Deve	lopment nmunity	and soc	iety in g		nrough th	neir resea	arch.
Course Outcon CO1	Contr Upgr	ribute in ade knov	the Res	search a of scien	nd Deve tific con	lopment nmunity	and soc	iety in g		nrough th	neir resea	urch.
Course Outcon CO1 CO2	Control Upgr	ribute in ade knov D-PO M	the Res wledge	search a of scien g Matr	nd Deve ttific con	lopment nmunity	and soc	iety in g / ME/4 /	SEC2			
Course Outcon CO1 CO2 COs	Contribution CONTRIBUTICON CONTRICON CONTRICON CONTRIBUTICON CO	ribute in ade knov	the Res wledge Iappin	search a of scien g Matr 6 d	nd Deve tific con ix for (SOA	lopment nmunity Course	and soc MTech	iety in g / ME/4/	SEC2 60d	P010	POII	P012
Course Outcon CO1 CO2 COs COs	Contribution CO	D-PO M	the Res wledge Iappin CO 3	search a of scien g Matr 0 4 0 3	nd Deve tific con ix for (SOA 3	Course	and soc MTech LOd 3	$\frac{\text{iety in g}}{\mathbf{ME/4/}}$	SEC2 60d 2	P010 3	110d 2	P012

submission of Dissertation.

Syllabus of Open Elective Courses offered by Mechanical Engineering Department

ME/OEC1:	Supply Ch	ain and Logis	tics Management
	Suppry Ch	ann ana Logis	ites management

	Millioliei. Supply Chain and Elogistics Management										
Course Type	Course	5		m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Open Elective Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance				

Instructions to paper setter for Final Term Examination: Final Term examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives:

• To improve the overall organization performance and customer satisfaction by improving product or service delivery to consumer.

• To fulfill customer demands through the most efficient use of resources, including distribution capacity, inventory and labor.

Course Outcomes			is course									
CO1			ls and imp				-		-			
CO2	~ ~ •		on and ou	tsourcing	techniqu	es for in	nprovin	g in cu	stomer	service i	n logist	ics and
		warehouse operations Analyse the impact of relationships and henchmarking on the performance of the supply shain										
CO3	-	Analyse the impact of relationships and benchmarking on the performance of the supply chain using appropriate metrics.										
CO4		Demonstrate the effective use of emerging information technologies in logistics and supply chain										
		management										
CO5	Ŭ	Develop appropriate models in transportation management for decision-making										
CO-PO Mapping Matrix for Course ME/OEC1												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	3	2	2	1	2	1	2	1
CO2	3	2	3	2	3	2	1	1	1	1	1	1
CO3	3	3	2	2	2	1	1	1	1	1	1	1
CO4	2	2	2	2	2	1	2	1	1	2	1	1
CO5	3	2	2	2	2	1	1	1	1	2	1	2
Average	2.8	2.2	2.2	2	2.4	1.4	1.4	1	1.2	1.4	1.2	1.2
		ME/OE	C1: Sup		e Conten 1 and Log		anagen	nent				
Unit I	Understa Logistics	Chain - ` nding the 5 Manag	Value Ch Supply C	ain - Co Chain Mar Drigin and	mponents nagement	s of Sup - Partici ion – Ty	oply Ch pants in opes of	ain - 7 Supply Logisti	The New Chain	ed for S – Global	upply C Applica Manager	Chain - ations. ment –
			Perspect									

Inventory-3PL and 4PL.

Unit - II	Logistics and Supply chain relationships: Benchmarking the logistics process and SCM operations –Mapping the supply chain processes – Supplier and distributor benchmarking –setting benchmarking priorities –identifying logistics performance indicators –Channel structure – Economics of distribution –channel relationships – logistics service alliances.
Unit - III	Information System: Introduction-Positioning of information in logistics and supply chain management (L&SCM)- Logistical information system-Operational logistical information system- Integrated information technology solution for L&SCM-Emerging Technologies in L&SCM.Transportation System: Introduction-Position of transportation in L&SCM-Elements of transportation cost-Modes of transportation-Multi-modal transportation-Containerization-Selection of transportation mode, Transportation decision (Pricing and Rate)-Transportation network (Routing and Scheduling).
Unit - IV	 Inventory Management: The role of cycle inventory in a supply chain –Managing multi echelon cycle inventory – Estimating cycle inventory – related costs in practice – the role of safety inventory in a supply chain – managing safety inventory in a multi echelon supply chain – the role of information technology in inventory management – estimating and managing safety inventory in practice. Logistics Organization: Introduction-Evolutionary trends of logistics and supply chain organization-Basic organization principles-Factors influencing organizational structure.

7. Donald J. Bowersox and David J. Closs, (2006), Logistical Management: The Integrated Supply Chain Process,

 Edward J Bradi, John J Coyle (2010), A Logistics Approach to Supply Chain Management, Cengage learning, New Delhi
 Chopra, S. and Meindl, P., (2014), Supply Chain Management: Strategy, Planning & Operations, 6th edition, Pearson Education (Singapore) Pvt. Ltd.

10. Agrawal D K, (2003), Logistics & Supply Chain Management, Macmillan India Ltd.

11. Simchi-Levi, D. Kaminsky, P. Simchi-Levi, E. and Ravi Shankar (2008), Designing & Managing the Supply Chain: Concepts, Strategies & Case Studies, Third Edition, Tata McGraw-Hill, Third Edition

ME/OEC2: Entrepreneurship Development Skills												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment Methods					
	Credit	Hours/Week	Mode	External	Internal	Duration						
Open Elective Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					

Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four

units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives:

- To understand small enterprises, problems faced by small enterprises, engineering economics, product planning and development, the contents of a project report and formulation of a project report.
- Starting innovative practices in their entrepreneurial activities & developing their skills on the traits that they want to carry forward.

carry forward.													
Course Outcomes	At th	e end o	f this co	urse, th	e studer	nt will	be able	to:					
CO1				describe t nt of the c						of entrep	oreneur	ship	
CO2				apply the									
CO3	Stude	nts will b	e able to	examine	the devel	opment	of a start	up					
		CO-PO	Mappi	ng Matr	ix for C	ourse I	ME/OE	C2					_
COs	POI	PO2	P03	P04	PO5	P06	P07	PO8	PO9	P010	P011	P012	
CO1	3	2	2	2	2	2	2	2	2	2	2	2	
CO2	3	3	2	2	2	2	2	2	3	2	2	2	
CO3	3	2	3	1	1	1	2	1	1	2	2	2	
Average	3	2.3	2.3	1.66	1.66	1.66	2	1.66	2	2	2	2	
		MI	E/OEC2	C : Entrep	ourse C oreneurs			ent Skil	ls				
Unit I	Introduction to Entrepreneurship: Meaning, Role of Entrepreneur, Entrepreneur Process: different approaches, Motivation for becoming an Entrepreneur. SME Concept, its role, status, prospects and policies for promotion of SMEs. Importance of Entrepreneurship: innovations, Qualities of successful Entrepreneur, Functions of an Entrepreneur, Types of Entrepreneur, Issues & Problems Entrepreneurial Practices.												
Unit - II	Econon Structur Types o Toward	nic Valu re, Reve of Entrep s R&D,	e which onue Mo oreneur, creates	includes del, Qu Issues &	, Growth alities o Problem of Nati	h Strate f succe ns Entr on & S	egies, va essful E epreneu Self pro	alue posi Entreprer rial Prac spect w	tion, l neur, l tices. ith Ch	Market Functio Contril	Segme ns of oution	ents, Va an Entrof Entr	ovation to alue Chain trepreneur, repreneurs: ur Carrier:
Unit - III	setting, Feasibil Entrepr Solving	and Har lity. Wo eneurs, l	dworkin men Ent Factors & problem	g, Resea treprenet & Model	urch & M urship: (s of Ent	Ianageı Opportu reprene	ment Sk inities, j eurial De	ill, Orga promotic evelopm	nizing on Hu ent. So	g & Con rdles an ocial En	ntrollin nd Pro ntrepre	ng, Soft spects eneurial	stent, Goal t skills and of women Initiative: , Business
Unit - IV	Product develop controll venture	Plannin ment ap ing ager	g and Deproaches	olved the	ent: Intro et develo eir role a	pment	process, nalities 1	, Elemen for gettir	ts of c ng clea	eoncurre arance t	ent eng before	gineerin starting	product ag, Various g individual ity project
	report, l	Preparati	on of Pr	eliminar analysis.	y Projec								• • •

- 1. "The Practice of Entrepreneurship" G.G. Meredikh, R.E. Nelson and P.A. Neck
- 2. "Handbook of Entrepreneurship" Rao and Pareek
- 3. S.S.Khanka "Entrepreneurial Development", S.Chand & Co. Ltd., New Delhi, 1999.
- 4. Kuratko & Hodgetts, "Enterprenuership Theory, Process and Practices", Thomson Learning 6th Edition.
- 5. Hisrich R D and Peters M P, "Entrepreneurship", 5th Edition Tata McGraw-Hill, 2002.
- 6. Mathew J Manimala, "Enterprenuership Theory at Cross Roads: Paradigms and Praxis", Dream Tech 2nd Edition, 2006.
- 7. Rabindra N. Kanungo "Entrepreneurship and Innovation", Sage Publications, New Delhi, 1998.

	ME/OEC3: Quality and Reliability Engineering												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Open Elective Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

Instructions to paper setter for Final Term Examination: Final Term Examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives:

- Demonstrate the approaches and techniques to assess and improve process and/or product quality
- Develop the understanding of principles and techniques of statistical quality control and their practical uses in product and/or process design and monitoring.
- Present a problem oriented in depth knowledge, underlying concepts, methods and application of reliability engineering.

Course	At the end of this course, the student will be able to:
Outcomes	
CO1	Relate the process variability in terms of cost of quality
CO2	Demonstrate the ability to design, use, and interpret control charts for monitoring the process quality

CO3	Apply b marking		ity impro	vement	and proble	em solvii	ng tool	s like Q	FD, FM	EA and	bench		
CO4	Design				and Tagu	chi metł	nods to	identify	the ma	in effect	s, intera	ction	
					Matrix fo	r Cours	e ME/	OEC3					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	2	2	1	1	1	1	1	1	1	
CO2	3	2	2	2	2	1	1	1	1	2	1	1	
CO3	3	2	2	2	3	1	1	1	1	2	1	1	
CO4	3	3	3	2	3	1	1	1	1	2	1	1	
Average	3	2.25	2.25	2	2.5	1	1	1	1	1.75	1	1	
		Μ	E/OEC3		ourse Con ty and Rel		Engin	eering					
Unit I	 Quality Management: Evolution of Quality Control; Quality Control vs. Assurance, Basic stages of Quality Control, Elements of Quality Cost, Elements of Quality costs. Statistical Process Control (SPC): Process Capability/Process Control: Process capability (Cp, Cpk, Pp, Ppk), Z scores, Special Causes and Common Causes of Variation, Process control charts for variables: X-R charts. Process control for attributes: p, np, c, u charts, Cusum Charts, Multi-Vari charts, Six – Sigma approach. 												
Unit - II	multiple AOQL co Strategic	sampling oncepts st	techniqu andard sa nd Techi	ies- O.C ampling niques:	t sampling c curves - plans for A Quality F llysis – Be	produce AQL and unction	er's Ri 1 LTPE Deploy	sk and O- uses o yment,]	consume of standa Deming	er's Risk ard samp	k. AQL, ling plai	LTPD, 1s.	
Unit - III	design, L performat Reliabili t bathtub c Reliabilit	atin squa nce meas t y: Defin curve – t y of syste	are desig ure – Ort ition – r ime depe em and m	n – Tag hogonal eliability endent f nodels –	chi Metho guchi meth array. y vs quali ailure mo serial, par ms, covari	hod – L ty, relial dels – c rallel anc	oss fu bility f listribu l comb	unction - unction utions – ined con	– experi – MTE normal nfigurati	BF, MTT , weibut	S/N ra R, avai ll, logno arkove a	tio and lability, prmal –	
Unit - IV	and Weil	oull distr	ibution, s system, s	Advanta series-pa	nodel, line ges of W ırallel sys	eibull d	istribu	tion; Sy	stem re	eliability	models	: series	

1. D.C. Montgomery, John Wiley, (2011), "Introduction to Statistical Quality Control", 6th Edition, 2011.

- 2. Krishnaiah.K, (2014), "Applied Statistical Quality Control and Improvement", Prentice Hall of India (PHI).
- 3. P. A. Tobias and D. C. Trindade, (2011), "Applied Reliability", 3rd Edition, Chapman and Hall/CRC.

.

			ME/O	EC4: Co	mpute	r Integra	ated Ma	nufact	uring														
Course Type	0	Course		ontact		elivery	N	laximur	n Marks		Exam	Assessme	ent										
	(Credit	Hou	s/Week	Ν	Aode	Exte	ernal	Interna	al D	uration	Method	S										
Open Elective Theory	2	04		04	L	ecture	7	0	30	3	Hours	TEE/MT Assignme s)/ Attendan	ent(
Instructions to the course. Total of short/objectivunits in the que addition to comp	numbe e type c stion pa	r of que questions per eac	stions s s from c h consis	hall be n complete sting of t	ine. Qu syllabu two que	estion n is. In add estions.	umber o lition to Student	one will o compu	be comp lsory firs	oulsory st quest	and will ion there	be consist e shall be f	ing our										
 Develop product Obtain a machine 	o an und cost, and an overv control	erstandi d quality view of c , etc, as	ng of co 7. compute they app	ply to fac	ntegrat ogies in tory ma	ed manu ncluding anageme	comput nt and f	ers, data	abase and	d data c		activity, a, networks	,										
Course	At the	e end of	this co	urse, the	e stude	nt will b	e able	to:															
Outcomes CO1	Under	stand th	affact	of monut	footurin	a outom	ation str	etogias	and daris	va produ	ution m	At the end of this course, the student will be able to:											
CO1 CO2						Understand the effect of manufacturing automation strategies and derive production metrics																	
	Analyze automated flow lines and assembly systems, and balance the line Design automated material handling and storage systems for a typical production system											etrics											
	Design					embly sy	stems, a	and bala	nce the l	ine													
CO3 CO4		n automa	ated mar		dling a	embly sy nd storag	rstems, a ge syster	and bala ms for a	nce the l typical j	ine													
CO3		n automa n a manu	ated man	terial han ng cell ar	idling and cellu	embly sy nd storaş lar manu	stems, a ge syster facturin	and bala ms for a g syster	nce the l typical j n	ine													
CO3		n automa n a manu	ated man	terial har	idling and cellu	embly sy nd storaş lar manu	stems, a ge syster facturin	and bala ms for a g syster	nce the l typical j n	ine													
CO3 CO4	Design	n automa n a manu	ated mar ifacturii C O-PO	terial han ng cell ar Mappin	idling a id cellu g Matr	embly sy nd storag lar manu ix for C	stems, a ge syster facturin ourse N	and bala ms for a g syster 1E/OE(nce the l typical j n C4	producti	on syste	em											
CO3 CO4 COs	Design O	n automa n a manu 00 A	ated mar ifacturin C O-PO	terial han ng cell ar Mappin	dling a nd cellu g Matr	embly sy nd storag lar manu ix for C	cstems, a ge system facturin ourse M	and bala ms for a g syster 1E/OE(nce the l typical j n C4	010d	IIOA	PO12											
CO3 CO4 COs CO1	Design O 3	n automa n a manu COA 2	ated mar ifacturin CO-PO	terial han ng cell ar Mappin 2	idling a nd cellu g Matr	embly sy nd storag lar manu ix for C	stems, a ge system facturin ourse M	and bala ms for a g syster 1E/OEO	nce the l typical j n C4	010 1	ion syste	em bol 1											

Average	3	2	2.5	2	2.25	1.5	1.25	1	1	1	1.5	1			
			ME/O	EC4: C		rse Con r Integi	tent rated Ma	nufact	uring						
Unit- I	CIM, N Engine concurr Develo Applic industr	 Concept of CIM: Manufacturing and its types – Definition of CIM, Elements of CIM, Benefits of CIM, Needs of CIM: Hardware and software. Concurrent Engineering: Definition, Sequential Engineering Versus Concurrent Engineering, Benefits of Concurrent Engineering, Characteristics of concurrent Engineering, Product Life-Cycle Management (PLM), Collaborative Product Development. Application of Computer Integrated Manufacturing (CIM) systems: CIM in automotive industry, Contributing Factors on CIM Application, Group Technology applications for Computer-Integrated Manufacturing Design for Manufacturing Processes. 													
Unit- II	CIM Technology and Systems: Design for Manufacturability (DFM): Component Design, Design for Assembly. Computer-Aided Process Planning: Variant and Generative Process Planning, Materia Requirements Planning (MRP), Manufacturing Resource Planning (MRP -II), Cellula Manufacturing, Programmable Logic Controllers, Flexible Manufacturing Systems: Physica Components of an FMS, FMS benefits and limitations of FMS.														
Unit- III	control data c collecti	Computer Aided Planning and Control: Production planning and control-cost planning and control-inventory management-Material requirements planning - (ERP)-shop floor control-Factor data collection system-Automatic identification system-barcode technology automated dat collection system. Computer Monitoring: Types of production monitoring systems-structure model of manufacturing													
	process-process control & strategies direct digital control-supervisory computer control-computer i QC – contact inspection methods non-contact inspection method - computer-aided testing integration of CAQC with CAD/CAM.														
Unit- IV	intellig intellig	Intelligent Systems in Manufacturing: Current Developments and Future Prospects-Artificia intelligence techniques and the components of an intelligent manufacturing system. key artificia intelligence technologies (fuzzy logic, artificial neural networks, expert systems and genetic algorithms).													
	Charac	teristics	and req	uireme	nts for c	loud-ba	Evoluti ased desi loud-Bas	gn and	manufa	cturing					

- Mikell Groover, (2016), "Automation, Production Systems and Computer-Integrated Manufacturing", 4th. Ed., ISBN # 0-13-349961-8, Pearson, New Jersey. T.C. Chang, R. Wysk and H.P. Wang, (2009), "Computer aided Manufacturing", Third Edition, Pearson 1.
- 2. Education.