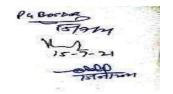
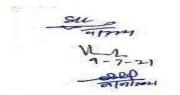

Learning Outcomes based Curriculum Framework (LOCF)


For

M. Tech. (Computer Science & Engineering) 2 Year Regular Full-Time Postgraduate Programme


Department of Computer Science & Engineering Chaudhary Devi Lal University Sirsa-125055 2021

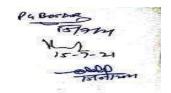
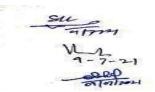
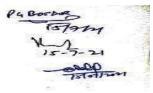


Table of Contents

- 1. About the Department
- 2. Learning Outcomes based Curriculum Framework
 - 2.1 Objectives of the programme
 - 2.2 Programme Outcomes (POs)
 - 2.3 Programme Specific Outcomes (PSOs)
- 3. Programme Structure

1. About the Department


There are two major streams in computer education. One of them is the Engineering stream leading to the B.E./B.Tech degree and the other an Applications stream leading to the MCA degree. The primary emphasis in the MCA programme is on designing information systems for various organizations such as government departments, banks, insurance companies, hotels, hospitals, etc. Development of application software in diverse areas where computers are used will be the main function of MCA graduates. The major thrust in the MCA programme is on giving the graduates a sound background in computing, business functioning, and mathematics relevant to information technology systems. The curriculum has the courses relevant to achieving the programme outcomes. A strong laboratory component is a part of the MCA curriculum, for computer application students learn best by doing. The laboratories, besides supplementing the theory course should also expose the student to the use of the latest software tools. Every MCA student is required to spend 6-8 weeks summer training in a relevant software development house or related industry after taking their second-semester terminal examinations. Further, in their fourth semester, every MCA student shall have to work on a real-life software development project worth 8 credits. For carrying out the project work, MCA students shall be taught and trained in various software development platforms for desktop, web-based, and mobile-based applications.

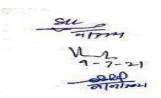

Further, every MCA student shall have to earn 116 credits in total – 76 Core Courses credits, 28 discipline elective courses Credits, and 12 Open Elective Courses Credits offered by other teaching departments of the University. The students with non-computer background at graduation level are required to earn 12 credits through two Bridge Courses. Moreover, so as to enhance the life skills, the student may opt for upto two Add-On Courses- 2 credits each. The postgraduate programme in engineering stream of computer science leading to the M. Tech. CSE degree has its primary emphasis on designing systems in computer hardware and systems software. Designing embedded systems, designing peripherals and interfacing them to a computer and use of computing science and engineering, students are provided a practical exposure to tools and technologies required in professional and academic arena. Curriculum of M. Tech. CSE programme comprises of an ample laboratory component, wherein the students get to know of current processes and technologies of this field.

The M. Tech. CSE programme regular (Full Time and Part Time) is dedicated to conducting and reporting on a research problem culminating in a dissertation worth 14 credits. Further, every M. Tech. CSE Regular Full Time student shall have to earn 88 credits in total – 44 Core Courses credits, 36 Discipline Specific Elective Courses Credits and 8 Open Elective Courses Credits offered by other teaching departments of the University. Every M. Tech. CSE Regular Part Time student shall have to earn 70 credits in total – 40 Core Courses credits, 30 Discipline Specific Elective Courses Credits. Mid-term examination shall cover the first two units of the course content. The question paper will be set by the internal teacher. This helps them blend their skills and orientation towards life in general and profession in particular. All in all, M. Tech. CSE graduates shall possess sound theoretical and research background apart from knowing modern principles and practices in computer science and engineering.

2. Learning Outcome based Curriculum Framework

The CBCS evolved into learning outcome based curriculum framework and provides an opportunity for the students to choose courses from the prescribed courses comprising core, elective/minor or skill-based courses. The courses can be evaluated following the grading system,

which is considered to be better than the conventional marks system. Grading system provides uniformity in the evaluation and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations which enables the student to move across institutions of higher learning. The uniformity in evaluation system also enables the potential employers in assessing the performance of the candidates.

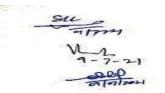

2.1 Objectives of the programme

After spending two years in their profession M.Tech. CSE Regular Full-Time graduates are expected to:

- apply knowledge and expertise gained thus far in problem-solving skills development and maintenance of software systems, tools, applications; academia and research in local and crossborder settings;
- be well adept in management of software development projects bearing techno-economical and social-behavioural delimitations; management of educational and research establishment; management of own start-up enterprise.
- exhibit support for peers and leadership by spearheading the projects teams; entrepreneurial skills by conceptualising new software projects; contributing to research and academia by way of undertaking research and academic assignments.
- engage in lifelong learning, career enhancement and adept to changing professional, societal, and environmental needs in a way conforming to his/her position in the profession/vocation;
- develop communication skills necessary to function productively in the given settings to achieve a successful professional/vocational career with academic and professional ethics and social obligations.

2.2 **Programme Outcomes (POs)**

PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data,

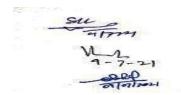


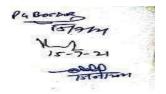
	and synthesis of the information to provide valid conclusions.					
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and					
	modern engineering and IT tools including prediction and modeling to complex					
	engineering activities with an understanding of the limitations.					
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to					
	assess societal, health, safety, legal and cultural issues and the consequent					
	responsibilities relevant to the professional engineering practice.					
PO7	Environment and Sustainability: Understand the impact of the professional					
	engineering solutions in societal and environmental contexts, and demonstrate the					
	knowledge of, and need for sustainable development.					
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities					
	and norms of the engineering practice.					
PO9	Individual and Team Work: Function effectively as an individual, and as a member					
	or leader in diverse teams, and in multidisciplinary settings.					
PO10	Communication: Communicate effectively on complex engineering activities with the					
	engineering community and with society at large, such as, being able to comprehend					
	and write effective reports and design documentation, make effective presentations,					
	and give and receive clear instructions.					
PO11	Project Management and Finance: Demonstrate knowledge and understanding of the					
	engineering and management principles and apply these to one's own work, as a					
	member and leader in a team, to manage projects and in multidisciplinary					
	environments.					
PO12	Life-long Learning: Recognize the need for, and have the preparation and ability to					
	engage in independent and life-long learning in the broadest context of technological					
	change.					

2.3 Programme Specific Outcomes (PSOs)

The graduates of the M.TECH. C.S.E. Regular Full-Time programme will have/be:

PSO1	ample knowledge of principles and practices of computer science and engineering and capability of putting these principles to use in solving relevant problems.
PSO2	working knowledge of using modern computing tools and technologies like simulation & modelling and CASE tools in development and operations of various flavours of computer applications and in conduct of computing research.


PSO3	well acquainted in adoption and application of skills gained during research and practice and exhibit a taste for adopting trending software processes to solve computing problems.
PSO4	working knowledge set for practicing their respective vocation/profession with ethics, integrity, leadership, and social responsibility.
PSO5	equipped to achieve their career goals in the academia/industry or pursue higher studies and enhance their professional knowledge.


3. Programme Structure

M.TECH. C.S.E. Regular Full-Time programme a four-semesters postgraduate programme is 88 credits weitage consisting of Core Courses (CC), Discipline Specific Elective Courses (DSC), Skill Enhancement Courses (SEC), Open Elective Courses (OEC);

Semester	Core C		Specific	Discipline pecific Elective Courses (DSC)Skill Enhancement CoursesOpen Elective CoursesCourses (DSC)(OEC)				Courses	Grand Total Credits
	No. of Courses	Total Credits	No. of Courses	Total Credits	No. of Courses	Total Credits	•	A total of 12 credits are	
Ι	6	20			-	-		to be earned from	
II	4	12	02	08	-	-		other Departments	
III	4	12	02	08	-	-		or from	
IV	_	_	_	_	1(Dissertation)	20	•	MOOCs. Students have to opt for open elective course(s) in consultation with Chairperson and Director, University Centre for Outreach Programmes and	

Table 1: MTech Credit Scheme

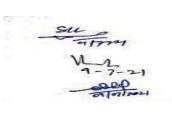
				Extension	
Total Credits	44	16	20	12	92
%age	47.82	17.39	21.73	13.04	-

Open Elective Courses offered for Students of other Departments						
Semester	No. of Papers Total Credits					
Even and	4	16				
Odd						

Add-On Courses(Optional)				
No. of Courses	Total Credits			
02(AOC1 &AOC2)	04			

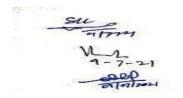
Note: Please mention L+P+T if practical is a part above.

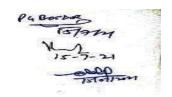
Semester	Core	Discipline Specific	Skill Enhancement	Open Elective	Total
	Courses	Elective Courses	Courses	Courses	Courses
	CC1			• A total of 12	6
	CC2			credits are to	
Ι	CC3			be	
	CC4			earned from	
	CC5			other	
	CC6			Departments	
	CC7	DSC1		or from	6
II	CC8	DSC2		MOOCs.	
	CC9			• Students have	
	CC10			to opt open	
	0011	D C C C		elective	
	CC11	DSC3		course in	
III	CC12	DSC4		consultation	6
	CC13			with	
	CC14		0001	Chairperson	
IV			SEC1	and Director,	1
			(Dissertation)	University	
				Centre for	
				Outreach	
				Programmes	
				and Extension	


Course Code	Course Title		Credit		
	Semester I	Theory	Practical	Total	
MTech/CSE/FT /1/CC1	Advanced Database Systems	4	0	4	
<u></u>	U_L 1-7-21 Deed Station	Pa Bors TS N_ IS	7354 7354 1-7-21	and the second	

		4	0	
MTech/CSE/FT /1/CC2	Advanced Data Structures	4	0	4
MTech/CSE/FT /1/CC3	Advanced Operating Systems	4	0	4
MTech/CSE/FT /1/CC4	Advanced Computer Architectures	4	0	4
MTech/CSE/FT /1/CC5	Software Lab based on	0	2	2
	MTech/CSE/FT /1/CC1			
	(implementation in PL/SQL)	0		
MTech/CSE/FT /1/CC6	Software Lab based on	0	2	2
	MTech/CSE/FT /1/CC2			
	(implementation in C/C++) Semester II			
		4	0	4
MTech/CSE/FT /2/CC7	Advanced Web Technology	4	0	4
MTech/CSE/FT /2/CC8	MATLAB Programming	4	0	4
MTech/CSE/FT /2/DSC1	(a) Network Security,	4	0	4
	(b) Advanced Computer Networks,			
	(c) Wireless Networks		-	
MTech/CSE/FT /2/DSC2	(a) Soft Computing,	4	0	4
	(b) Machine Learning,			
MTech/CSE/FT /2/CC9	(c) Artificial Intelligence Software Lab based on	0	2	2
MTech/CSE/FT/2/CC9	MTech/CSE/FT /2/CC7 (Advanced	0	2	Z
	Wheeh/CSE/F1/2/CC7 (Advanced Web Technology)			
MTech/CSE/FT /2/CC10	Software Lab based on	0	2	2
	MTech/CSE/FT /2/CC8	U	2	2
	(MATLAB Programming)			
	Semester III			
MTech/CSE/FT /3/CC11	Python Programming	4	0	4
MTech/CSE/FT /3/CC12	Research Methodology	4	0	4
MTech/CSE/FT /3/DSC3	(a) IoT and Cloud Computing,	4	0	4
	(b) Grid Computing,			
	(c) Quantum Computing			
MTech/CSE/FT /3/DSC4	(a) Data Warehousing and Data	4	0	4
	(b) Mining. Big Data Analytics,			
	(c) Data Science			
MTech/CSE/FT /3/CC13	Software Lab based on	0	2	2
	MTech/CSE/FT /3/CC11			
	(Python Programming)			
MTech/CSE/FT /3/CC14	Software Lab based on	0	2	2
	MTech/CSE/FT /3/CC12			
	(implementation in MATLAB)			
	Semester IV			20
MTech/CSE/FT /4/SEC1	Dissertation			20

Table 4: MTech CSE Regular Full Time Courses' List


Course Code	Course Title		Credits
	Core Courses		
MTech/CSE/FT /1/CC1	Advanced Database Systems		4
<u>S4</u>	N_L alphan alphan alphan	Py Borban Totomy WA 15-7-21 	


MTech/CSE/FT /1/CC2	Advanced Data Structures	4
MTech/CSE/FT /1/CC2		
	Advanced Operating Systems	4
MTech/CSE/FT /1/CC4	Advanced Computer Architectures	4
MTech/CSE/FT /1/CC5	Software Lab based on MTech/CSE/FT /1/CC1	2
	(implementation in PL/SQL)	
MTech/CSE/FT /1/CC6	Software Lab based on MTech/CSE/FT /1/CC2	2
	(implementation in C/C++)	
MTech/CSE/FT /2/CC7	Advanced Web Technology	4
MTech/CSE/FT /2/CC8	MATLAB Programming	4
MTech/CSE/FT /2/CC9	Software Lab based on MTech/CSE/FT /2/CC7	2
	(Advanced Web Technology)	
MTech/CSE/FT /2/CC10	Software Lab based on MTech/CSE/FT /2/CC8	2
	(MATLAB Programming)	
MTech/CSE/FT /3/CC11	Python Programming	4
MTech/CSE/FT /3/CC12	Research Methodology	4
MTech/CSE/FT /3/CC13	Software Lab based on MTech/CSE/FT /3/CC11	2
	(Python Programming)	
MTech/CSE/FT /3/CC14	Software Lab based on MTech/CSE/FT /3/CC12	2
	(implementation in MATLAB)	
	Discipline Specific Elective Courses	
MTech/CSE/FT /2/DSC1	(a) Network Security,	4
	(b) Advanced Computer Networks,	
	(c) Wireless Networks	
MTech/CSE/FT /2/DSC2	(a) Soft Computing,	4
	(b) Machine Learning,	
	(c) Artificial Intelligence	
MTech/CSE/FT /3/DSC3	(a) IoT and Cloud Computing,	4
	(b) Grid Computing,	
	(c) Quantum Computing	
MTech/CSE/FT /3/DSC4	(a) Data Warehousing and Data Mining.	4
	(b) Big Data Analytics,	
	(c) Data Science	
MTech/CSE/FT /4/SEC1	Skill Enhancement Courses Dissertation	20
WITCH/CSE/FI/4/SECI	Add-On Courses	20
MTech/CSE/FT/1/SEC1	Green Computing	2
WITCH/CSE/11/1/SEC1	Green Computing	2
MTech/CSE/FT/2/SEC2	Cyber Laws and Ethics in Computing	2
Open	Electives Courses offered to other departments	I
	ODD Semester and Even Semester	
CSE//9/OEC1	Fundamentals of Information Technology	4
CSE/9/OEC2	Windows and Office Automation Tools	4
CSE/9/OEC3	Introduction to Cyber Space	4
CSE/9/OEC4	Information Technology for Lifelong Learning	4
	internation reenhology for Enclose Learning	

Note: During the dissertation work Students be encouraged to publish their research work in Scopus/Web of Science(SCI, SCIE, ESCI)/UGC CARE journals.

	MTech/CSE/FT/1/CC1: Advanced Database Systems											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	Mode External		Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					

Course Objectives: The objective of this course is to get the students familiar with different concepts related to database.

Course Outcomes	At the	end of th	is course	e, the stu	dent wil	l he ahla	e to:						
Course Outcomes CO1				ecture, E				-1 fund	rtional	depende	ncies	normal	
001				s in SQL									
				and client				1	, ,			,	
CO2				relationa				, funct	tional of	depende	ncies,	normal	
	forms,	SQL co	nstraints	and vie	ws, reco	very tec	chnique	es, data	a wareł	nouse, a	nd dist	ributed	
	databas												
CO3				L statem						s, deper	ndencie	s, data	
004				ontrol and						1	C	10.0	
CO4				super clear super									
CO5				class, in								traints,	
							ontrol	and rec	covery	techniqu	ies.		
CO 6	design:	Sunctional dependencies, security, concurrency control and recovery techniques. lesign: database for a particular application.											
	CO-P	CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC1											
COs	PEO1	l	PE	EO2		PEO3		PE	EO4		PEO5		
CO1	1			1		3			3				
CO2	2		-	2		3			3		3		
CO3	3			3		3			3		3		
CO4	3		,	3		3			3		3		
CO5	3		,	3		3			3		3		
CO 6	3			3		3			3		3		
Average	2.5		2	.5		3			3		3		
	CO-I	PO Map	ping Ma	atrix for	Course	MTech	/CSE/	FT/1/C	CC1	I			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	1	-	-	-	-	1	3	
CO2	2	1	1	3	1	1	-	-	-	-	2	3	
CO3	3	1	1	3	3	1	-	-	-	-	3	3	
CO4	3	3	1	3	1	1 1 -		-	-	-	3	3	
CO5	3	1	1	1	3	1	-	-	-	-	3	3	

CO 6	3	3	3	3	3	1	-	-	-	-	3	3
Average	2.5	2	1.33	2.33	2	1	-	-	-	-	2.5	3
	CO-P	SO Maj	oping M	atrix for	Cours	e: MTec	h/CSE	/FT/1/	CC1			
COs	PS	501		PSO2		PSO3		Ι	PSO4		PSOS	5
CO1		3		2		1			-		3	
CO2		3		2		2			-		3	
CO3		3		2		3			-		3	
CO4		3		2		3			-		3	
CO5		3		2		3			-		3	
CO 6		3		2		3			-		3	
Average		3		2		2.5			-		3	
	Course Content MTech/CSE/FT/1/CC1: Advanced Database Systems											
Unit - II	Constrai Inheritar specializ model C Informa forms b Decomp Data De	nce, Sp zation ar constrain al desig based on osition,	becializa ad Gener ats and R n guide n Prima Multiva	tion an calization delational lines for ry keys: alued dep	d Gen Relati Databa Relati 1NF, pendenc	eralization onal Mo se Scher onal scl 2NF, 31 ies and	on, C del: Re nas hemas: NF and 4NF, .	onstrai lationa Func d BCI JOIN	nts ar al Mode tional l NF, Pro depende	nd cha el Conc Depend operties encies	epts, Rel epts, Rel encies, 1 s of Rel and 5NH	ics of lational Normal lational F. SQL
Unit - III	SQL. Introdu Database algorithm	ction t e recove	o Tran	saction niques: I	process Deferred	ing: Co	oncepts and Ir	, Con	currenc	cy cont	rol tech	niques,
Unit - IV	Data Warehousing : Components, Building a data warehouse, Data extraction, cleanup and transformation, OLAP Future Trends in data models: Semantic data models, Active and Spatial databases, Temporal databases, Multimedia databases, Distributed Database concepts and Client Server Architecture								ive and			
			Т	ext/Refe	erence H	Books						
Text Books				Fundamer Databas			•				•	
Reference Books	 C.J. Date: An Introduction to Database System, 7e, Addison Western New Delhi. Abbey Abramson & Cory: ORACLE SI-A Beginner's Guide Tata McGraw Hill Publishing Company Ltd. Hector G.M., Ullman J.D., Widom J., "Database Systems: The Complete Book", Pearson Education. 											

MTech/CSE/FT/1/CC2: Advanced Data Structures										
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment			
	Credit	Hours/Week	Mode	External Internal		Duration	Methods			
Compulsory Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance			

Course Objectives: The objective is to make students to learn different algorithms analysis techniques, analyse the efficiency of algorithm, apply data structures and algorithms in real time applications.

	~ ~	•											
Course Outcomes	At the e	At the end of this course, the student will be able to:											
CO1		identify: data type, time and space complexity, stack, queue, linked list, trees, graph, searching, sorting and hashing.											
CO2		understand and explain: abstract data types, stack, queue, linked list, tree, and graph, searching, sorting, and traversing algorithms and hashing function.										graph,	
CO 3	apply a										ist op	erations	s. tree
	traversa												
	techniqu	es on da	ata.										
CO 4	distingu												
	linked li												earch,
								ching an					·/ 11
CO5	select: a			repr	resenta	tion tech	nnique	, searchi	ng and s	sorting	techn	ique su	itable
CO 6	in a give design:			vk ai	nene 1	inked liv	at trees	graph	searchir	ng sort	ing ar	nd hashi	nσ
	_	-								-	ing ai	lu nasin	ing.
CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC2													
COs	l	PEO1		PEO2			PEO3		PEO4			PEO5	
CO1		1		1			3			3		3	
CO2		2			2			3		3		3	
CO3		3			3		3		3			3	
CO4		3			3		3		3			3	
CO5		3			3]	3		3		3	
CO 6		3			3			3		3		3	
Average		2.5			2.5			3		3		3	
	CO-P	O Mapj	ping M	Iatri	ix for (Course	MTech	/CSE/F	T/1/CC	2			
COs						10				-	0	-	2
	PO1	P02	PO3		P04	PO5	PO6	PO7	PO8	P09	P010	P011	P012
	H						<u> </u>				Ъ	Р	Ч
CO1	1	3	1		1	1	-	-	-	-	-	1	3
CO2	2	1	1		3	1	-	-	-	-	-	2	3
CO3	3	1	1		3	3	-	-	-	-	-	3	3

1		1		1	1	1	1	i.	1	1		. 1
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	1	3	-	-	-	-	-	3	3
CO 6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.33	2.33	2	-	-	-	-	-	2.5	3
	CO-PS	SO Map	ping Ma	atrix for	Course	MTecl	h/CSE/H	FT/1/CC	22			
COs	P	SO1]	PSO2		PSC	03		PSO4		PSC)5
CO1	CO1 3 3 1 - 3											
CO2		3		3		2			-		3	
CO3		3		3		3			-		3	
CO4		3		3		3			-		3	
CO5		3		3		3			-		3	
CO 6		3		3		3			-		3	
Average		3		3		2.5			-		3	
Course Content MTech/CSE/FT/1/CC2: Advanced Data Structures												
Unit I Unit - II	performance analyzing algorithms, designing algorithms, time-Space trade offs growth of functions, asymptotic notations, Recurrences: master, substitution, recurrence tree method.										wth of hod. ed list	
Unit - III	Trees: rep Splay trees Graphs : : shortest p minimum	s, B-trees represent ath algo	s, m-way ntation, prithms	y search traversa (Dijkstr	tree, im ls(BFS, a's), m	plemen DFS, T inimum	tation of Copologi spanni	threadi cal sort ng tree	ng on t), opera	oinary t ations,	trees. applic	ations,
Unit - IV	Sorting a Merge sor Hashing: for Extend	nd Sear t, Quick hash Fur	ching: 1 sort, Bu	inear se bble sor	arch, bi t, Bin sc	nary se ort, Radi	arch, ins	sertion s				
			Te	xt/Refe	rence B	ooks						
Text Books	 Seymour lipschutz, Data structures with C, MacGraw Hill. Adam Drozdek, Data Structures and Algorithm in C++, India Edition. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley. 											
Reference Books	 Alfred V. Aho, John E.Hopcroft, Jeffrey D.Ullman, Data Structures and Algorithms, Pearson Education. Ellis Horowitz,SartajSahni,SanguthevarRajasekaran, Fundamental of Computer Algorithms, 2e,Universities Press. YedidyahLangsam, Moshe J.Augenstein, A. M.Tenebaum, Data Structures using C and C++, 2e, Pearson Education 											

	MTech/CSE/FT/1/CC3: Advanced Operating Systems											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External Internal		Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance					

Course Objectives: The objective of this course is to study, learn, and understand the major concepts of advanced operating systems, namely, multimedia operating systems, distributed and real time operating systems, threads, security and design issues in operating systems.

Course Outcomes	At the	end of	this cou	rse the	student	will be	able to).					
CO1									ribu	ited and	t real	time op	erating
		n, issues										· · · · · · · · · · · ·	0
CO2		stand a										n, conc	.
						ne opera	ting s	yster	n, i	ssues in	n desig	n, secur	ity and
		mance o						1		1.1	- 1	1 11	
CO3												eduling, ating sys	tem.
CO4												tual exc	
	deadlo	ock, secu	urity and	d protec	tion.						0		
CO5						hedulin	g and	disl	k so	chedulir	ng, mu	tual exc	lusion,
	deadlo	deadlock, security and protection.											
CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC3													
COs	PE	01		PEO2		P	EO3			PEO4		PEC)5
CO1	-	1		1			3			3		3	
CO2		2		2			3			3		3	
CO3		3		3			3			3		3	
CO4		3		3			3			3		3	
CO5		3		3			3			3		3	
Average	2	.4		2.4			3			3		3	
	CO-l	PO Maj	pping N	latrix f	or Cou	rse MT	ech/CS	SE/F	T/ 1	/CC3			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC)8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1	-	-		-	-	1	3
CO2	2	1	1	3	1	1	-	-		-	-	2	3
CO3	3	1	1	3	3	1	-	-		-	-	3	3
CO4	3	3	1	3	1	1	-	-		-	-	3	3
CO5	3	1	1	3	3	1			-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	1	-	-		-	-	2.4	3
	CO-P	SO Ma	pping I	Matrix	for Cou	irse MT	Tech/C	SE/I	FT/	1/CC3			
COs	P	SO1		PSO2	2	Р	SO3			PSO4		PSC)5
CO1		3		2			1			-		3	

CO2	3	2	2	-	3					
CO3	3	2	3	_	3					
CO4	3	2	3	-	3					
CO5	3	2	3	-	3					
Average	3	2	2.4	-	3					
	MTech/CSE	Course Coi /FT/1/CC3: Advar		vstems						
Unit I	^	ting systems: Intro ards; process scheo ltimedia.								
Unit - II	Distributed operating systems: Multiprocessor hardware and scheduling; multicomputer hardware and scheduling; distributed computing architecture; distributed system models; distributed shared memory and distributed file system; mutual exclusion and deadlocks in distributed systems; network operating system vs. distributed operating system.									
Unit - III	Real-time operating systems: Characteristics and classification of real-time systems; scheduling in real-time operating systems; trends in kernel design, exo-kernel and micro-kernel; virtualization; threads – concept, advantages, implementation.									
Unit - IV	principles and pa system; performar	operating system radigms of interfance of operating sy attacks, protection	ice design; issues ystem; security – (in implementa	tion of operating					
	I	Text/Referenc	e Books							
Text Books.	 Andrew S. Tanenbaum, Modern Operating Systems, 2e, Pearson – Prentice Hall. Pramod Chandra P. Bhatt, An Introduction to Operating Systems – Concepts and Practice, 3e, Prentice Hall, India. Charles Crowley, Operating Systems – A Design Oriented Approach, Tata McGraw Hill. 									
Reference Books	 Deitel H.M., Operating Systems, Pearson Education. Stallings William, Operating System, PHI Learning. Godbole A.S., Operating Systems, Tata McGraw-Hill, New Delhi. Tanenbaum A.S., Operating System- Design and Implementation, PHI Learning. 									

	MTech/CSE/FT/1/CC4:Advanced Computer Architectures											
Course Type	Course	Contact	Delivery	Maximum Marks	Exam	Assessment						

	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance

Course Objectives: The objective of this course is to get the students familiar with different concepts related to computer architecture.

	1													
Course Outcomes	At the end of this course, the student will be able to: define: concepts of parallel processing, computer architecture, principles of pipeline,													
CO1														
												paging,		
CO2									ed and sl			ciples of		
												, paging,		
												chniques,		
				ared MI		2	0.		e		e			
CO3	illustrate different types of: computational models, pipeline, scheduling, TLB, paging,													
	segmentation, cache performance, network interconnection topologies, cache													
CO4	coherence problem and switching network. categorize: level of parallelism, linear and non-linear pipeline, code scheduling, TLB,													
C04	categorize: level of parallelism, linear and non-linear pipeline, code scheduling, TLB, paging and segmentation, UMA, NUMA, CC-NUMA and COMA multiprocessors.													
CO5		paging and segmentation, UMA, NUMA, CC-NUMA and COMA multiprocessors. relate: concurrent and parallel execution, dependencies between instruction,												
		synchronous and asynchronous pipeline, different code scheduling and hardware												
based cache coherence protocols.														
CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC4														
COs	P	PEO1		PEC	02	PEO3			PEC	94	Р	EO5		
CO1		1		1		3			3			3		
CO2		2		1			3		3			3		
CO3		3		1			3					3		
CO4		3		1		3			3			3		
CO5		3		1			3		3			3		
Average		2.4		1			3		3			3		
	CO-F	PO Maj	pping	Matrix	tor Co	ourse N	ITech/C	CSE/F	Г/1/СС4	Ļ				
COs												0		
	PO1	P02	PO3	P04	PO5	PO6	PO7	P08	P09	P010	P011	P012		
	Ц	д	щ	щ	щ	щ	щ	щ	щ	Ā	đ	Ā		
CO1	1	3	1	1	1	-	-	-	-	-	1	3		
CO2	2	1	1	3	1	-	-	-	-	-	2	3		
CO3	3	1	1 3 3 3				3							
CO4	3	3	1 3 1 3				3	3						
CO5	3	1	1	3	3	-	-	-	-	-	3	3		

Average	2.4 1.8	1 2.6 1.8			- 2.4 3							
	CO-PSO Mapp	ing Matrix for (Course MTech/CS	SE/FT/1/CC4								
COs	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	1	1	-	3							
CO2	3	1	2	-	3							
CO3	3	1	3	-	3							
CO4	3	3 1 3 - 3										
CO5	3	1	3	-	3							
Average	3	1	2.4	-	3							
Course Content MTech/CSE/FT/1/CC4:Advanced Computer Architectures Unit I Concurrent and Parallel Execution: Von-Neumann computational model, Basic concepts												
	of parallel processing, Types and levels of parallelism, Classifications of parallel architectures. Instruction-Level-Parallel Processors: Dependencies between instructions, Principles of Pipelining. Pipelined instruction processing, Synchronous & Asynchronous pipeline, Linear Pipeline-clocking & timing control, speedup, efficiency & throughput, Non linear pipeline- reservation table, latency analysis, collision free scheduling, internal data forwarding.											
Unit - II	Principles of particular delayed branch	pelining, Performing, branch proc	mance measures, V	VLIW architectu branching, guar	between instructions, ire, Branch handling- ded execution, Code ling.							
Unit - III	models, TLB, p models, cache p Distributed M	aging and segme performance issue	ntation, memory res, interleaved mer res: Direct interc	eplacement polic nory organization	lity, virtual memory eies, cache addressing n. vorks-interconnection							
Unit - IV												
		Text/Refere	ence Books									
Text Books	 Hennessy J.D., Patterson D.A., "Computer Architecture A Quantitative Approach", Elsevier India. Sima D., Fountain T., Kasuk P., "Advanced Computer Architecture-A Design Space Approach," Pearson Education. 											
Reference Books		ng, "Advanced bility", Tata McO		tecture – Para	allelism, Scalability,							

MTech/CSE	MTech/CSE/FT/1/CC5:Software Lab based on MTech/CSE/FT/1/CC1(Implementation in PL/SQL)													
Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment							
	Credit	Hours/Week	Mode	External Internal		Duration	Methods							

Practical	02	04	L	ab Work		50	-		3 Hou	s T	EE/ Pra File				
Instructions to pa panel of internal ar practical and a viva	nd external e	examiner													
Course Objectives database (as covered										n advanc	ed con	cepts of			
Course Outcom				e, the stu											
CO1	forms,	efine: 3-schema architecture, ER diagrams, EER model, functional dependencies, normal orms, data types, views in SQL, concurrency control techniques, database security issues, emantic data models, and client server architecture.													
CO2	discus	discuss: ER diagram, relational model, EER model, functional dependencies, normal													
		forms, SQL constraints and views, recovery techniques, data warehouse, and distributed databases.													
CO3	apply:	apply: inheritance, SQL queries, normal forms, SQL constraints, dependencies, data security, concurrency control and recovery techniques on database.													
CO4	constr	differentiate: subclass, super class, inheritance, SQL queries, normal forms, SQL constraints, functional dependencies, data security, concurrency control and recovery techniques.													
CO5	justify	techniques. justify: subclass, super class, inheritance, SQL queries, normal forms, SQL constraints, functional dependencies, data security, concurrency control and recovery techniques.													
CO 6design: database for a particular application.															
CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC5															
COs	PEO	1	PE	EO2		PEO3		PE	EO4		PEO	5			
CO1	1			1		3		3			3				
CO2	2			2		3			3						
CO3	3			3		3			3						
CO4	3			3		3			3		3				
CO5	3			3		3			3		3				
CO 6	3			3		3			3		3				
Average	2.5		2	.5		3			3		3				
	CO-	PO Mar	oping M	atrix for	Course	MTech	/CSE/I	FT/1/C	CC5						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	3	1	1	1	1	-	-	-	-	1	3			
CO2	2	1	1	3	1	1	-	-	-	-	2	3			
CO3	3	1	1	3	3	1	-	-	-	-	3	3			
CO4	3	3	1	3	1	1	-	-	-	-	3	3			
CO5	3	1	1	1	3	1	-	-	-	-	3	3			
CO 6	3	3	3	3	3	1	-	-	-	-	3	3			
Average	2.5	2	1.33	2.33	2	1	-	-	-	-	2.5	3			
	CO-I	PSO Maj	pping M	atrix for	Course	: MTec	h/CSE	/FT/1/	CC5						
COs	P	SO1		PSO2		PSO3	3	F	PSO4		PSO5				
CO1		3		2		1	ĺ		-	İ	3				

CO2	3	2	2	-	3
CO3	3	2	3	-	3
CO4	3	2	3	-	3
CO5	3	2	3	-	3
CO 6	3	2	3	-	3
Average	3	2	2.5	-	3

MTech/CSE	MTech/CSE/FT/1/CC6: Software Lab based on MTech/CSE/FT/1/CC2(Implementation in C/C++)														
Course Type	e Type Course Contact Credit Hours/Week		Delivery	Maximu	m Marks	Exam	Assessment								
			Mode	External	Internal	Duration	Methods								
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File								

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with the advanced concepts of data structure and how to implement those concepts using C/C++. The course shall be based on MTech/CSE/FT/1/CC2.

Course Outcomes	At the end of this course, the student will be able to:													
CO1				ne and sp				us data	structu	ıre –	stack,	queue,		
				searchin										
CO2				: abstract ing, sorti										
CO 3				data type										
0.5														
	traversal operation, graph representation and traversals algorithms, and searching sorting techniques on data.													
CO 4	distinguish: time and space complexity, stack and queue, single, double and circular													
	linked list, binary, AVL, B tree and multiway search tree, depth and breadth first search,													
	Dijkstra's and Kruskal's algorithm, various searching and sorting techniques.													
CO 5	select: algorithm, data representation technique, searching and sorting technique suitable													
	in a given situation.													
CO 6	design: algorithm, various data structure – stack, queue, linked list, trees, graph, searching, sorting and hashing.													
	CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC6													
COs	I	PEO1		PEO2			PEO3		PEO4		PEO5			
CO1		1		1			3		3		3			
CO2		2		2			3		3			3		
CO3		3		3		3			3		3			
CO4		3		3		3		3			3			
CO5		3		3			3		3		3			
CO 6		3		3			3		3			3		
Average		2.5		2.5	i		3		3			3		
	CO-PO	Э Марр	ing Ma	atrix for	Course	MTech	/CSE/F	Т/1/СС	5	Ļ				
COs														
	PO1	P02	P03	P04	P05	P06	PO7	P08	P09	PO10	P011	P012		
	Ā	đ	Ā	Ā	đ	Ā	đ	đ	Ā	P(P(P(
CO1	1	3	1	1	1	-	-	-	-	-	1	3		
CO2	2	1	1	3	1	-	-	-	-	-	2	3		
CO3	3 1 1 3 3 3 3								3					

CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	1	3	-	-	-	-	-	3	3	
CO 6	3	3	3	3	3	-	-	-	-	-	3	3	
Average	2.5	2	1.33	2.33	2	-	-	-	-	-	2.5	3	
CO-PSO Mapping Matrix for Course MTech/CSE/FT/1/CC6													
COs	PS	501	I	PSO2		PSO	3]	PSO4		PSC)5	
CO1		3		3		1			-		3		
CO2		3		3		2			-		3		
CO3		3		3		3			-		3		
CO4		3		3		3			-		3		
CO5		3		3		3			-		3		
CO 6		3		3		3			-		3		
Average		3		3		2.5			-		3		

	MTech/CSE/FT/2/CC7: Advanced Web Technology													
Course Type	Course			Maximu	m Marks	Exam	Assessment							
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods							
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance							

Course Objectives: The objective of this course is to get the students familiar with different concepts related with HTML, Java Scripts, Search Engines and CMS.

r															
Course Outcome	s At the	end of th	nis cours	e, the stu	dent wil	l be able	e to:								
CO1			ic conce n engine						L5, XN	/IL, Jav	aScript,	, PHP,			
CO2			L comm						of XM	L, Java	Script c	oncept			
			ySQL, se								•	•			
CO3	perform	n: HTM	L tags	with XN	IL, Java	Script v	vith PI	HP and	l MyS	QL que	ries, op	timize			
		-	result u	sing SE	O techn	iques, V	Webho	sting a	and dif	ferent	type of	CMS			
	techno	-													
CO4		illustrate: relationship of HTML with XML, building query on tables and forms, improve ranking using search engine optimization techniques, analyze different CMS like													
		wordpress, Joomla and Drupal with help of their features.													
CO5		Wordpress, Joomla and Drupal with help of their features. compare: HTML with HTML5, relationship of HTML, SGML and XML.													
005	·	compare: HTML with HTML5, relationship of HTML, SGML and XML. determine: client side or server side JavaScript.													
		evaluate: queries on table and forms using MySQL.													
		choose: effective plan to achieve higher ranking in search results.													
CO6		design: webpages using HTML, CSS, XML and JavaScript, generate various query using													
	MySQ	L in web	pages, n	nodify w	ebpages	to achie	ve hig	ner ran	king in	search	engine.	_			
	create:	blog or	websites	using C	ontent M	lanagem	ent Sy	stem.							
	CO-P	EO Ma	pping M	latrix fo	r Cours	e MTecl	n/CSE/	/FT/2/	CC7						
COs	PEO		PE	02]	PEO3		PE	EO4		PEO:	5			
CO1	1			1		3			3		3				
CO2	2			2		3			3		3				
CO3	3			3		3			3		3				
CO4	3			3		3			3		3				
CO5	3			3		3			3		3				
CO6	3			3		3			3		3				
Average	2.5		2	.5		3	Ì		3		3				
	CO-	PO Map	ping Ma	atrix for	Course	MTech	/CSE/I	F T/2/C	C7	·					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	3	1	1	1	-	-	-	-	-	1	3			

CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.33	2.66	2	-	-	-	-	-	2.5	3
	CO-P	SO Ma	pping M	latrix fo	r Cour	se MTecl	h/CSE/	FT/2/0	CC7		1	
COs	PS	501		PSO2		PSO3	3	F	PSO4		PSO	5
CO1		3		3		1			-		3	
CO2		3		3		2			-		3	
CO3		3		3		3			-		3	
CO4		3		3		3			-		3	
CO5		3		3		3			-		3	
CO6		3		3		3			-		3	
Average		3		3		2.5			-		3	
	I	MTech/	CSE/FT	Cours /2/CC7:		ent ced Web	Techn	ology				
Unit I	Overviev sheets, X XML, Tl	ML rela	tionship	between								
Unit – II	Java Scri PHP/My Cookies.	SQL Fu										
Unit – III	Search E Optimiza intervals	ation (SI										
Unit – IV	CMS: In CMS Te Hosting	chnolog	ies: Wor	dPress, I	Drupal,	Joomla, `	Website	e Creat	ion and	1 mainte	enance,	Web
			Т	'ext/Refe	rence	Books						
Text Books.	2. Koge - Bla	ent Lear ick Bool	ning, "W x", Wiley	Veb Tech y India P	nologie vt. Ltd.	Performar s: HTMI Pearson I	., JavaS	Script, 1			P, XML,	, AJAX
Reference Books	2. DT I	Editorial	Service	s, "HTM	L 5 Bla	Referend ick Book ams Publ	", 2e, V	Viley Ir				

		MTech/CSE/F	T/2/CC8: MA	ATLAB Pro	gramming		
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance

Course Objectives: The objective of this course is to study, learn, and understand the major concepts of MATLAB Programming, namely, data types, data structure, matrices, data import/export, graphics, control structure, toolboxes, image and video processing.

Course Outcomes	At the	end of	this cou	rse, the	student	will be	able to):				
C01				mands, o								
		-	ıt/outpu	it, file ha	andling	and gra	aphics,	contro	l structu	ire and	toolboxe	es used
		TLAB.									-	
CO2				igin, fe								
				ns relate MATLA		e, functi	on rela	ated to g	graphics	s, contro	of structu	ire and
CO3				ations, to		enus to	olhare	input/c	utput fi	inctions	file ha	ndling
005				graphi								
				& video			-	•		Structur	<i>c, acc</i>	.999,
CO4				data ty						natrix, 1	tools, di	ifferent
	function	ons relat	ted to gi	raphics a	and file	handlir	ig in gi	iven MA	ATLAB	program	n.	
CO5				, data t							ing tech	nnique,
				olbox o				č			1 00	1.00
CO6				nced pro								
				ools, fea box of N			, iuzzy	y logic,	neural	network	c and in	hage &
		•					Cach/C	SF/FT				
	CO-P	EO Ma	pping 1	Matrix f	lor Cou	Irse IVI	lecn/C	5E/F 1/	2/008			
COs	PE	O1		PEO2		Р	EO3		PEO4	ŀ	PEC)5
CO1	-	1		1			3		3		3	
CO2	-	2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
CO6	2	3		3			3		3		3	
Average	2	.5		2.5			3		3		3	
	CO-l	PO Map	ping N	latrix f	or Cou	rse MT	ech/CS	SE/FT/2	2/CC8			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3

CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.33	2.67	2	-	-	-	-	-	2.5	3
	CO-P	PSO Ma	pping l	Matrix f	for Cou	irse M]	[ech/C	CSE/F1	C/2/CC8			
COs	F	PSO1		PSO2	2	Р	SO3		PSO4	1	PSC	05
CO1		3		3			1		-		3	
CO2		3		3			2		-		3	
CO3		3		3			3		-		3	
CO4		3		3			3		-		3	
CO5		3		3			3		-		3	
CO6						3		- 3 - 3 - 3 - 3				
Average		3		3			2.5		-		3	
		MTech	h/CSE/H	Cour FT/2/CC	rse Cor 28: MA		Progra	ammir	ıg			
	director constan assignn Vectors matrice	ry and a nts, varia nent stat s and m es subsc	saving ables an tements natrices: ripts, m	files, co d expres scalars ulti-dim	nstants ssions, and ve ensiona	variabl operato ectors, al matri	es and rs, hie enterin ces an	l expre rarchy ng data d array	essions-c of opera in matr	haract ations, rices, l x man	er set, da built-in-f	ata type, function, inuation,
Unit - II	Input/o comma Introdu file, in audio/v an xls f creating	utput st nds, lov ction to nporting rideo da files, wo	atement v level i o data ir g audio ta, exan orking v ole GUI	nput out nport an /video nple, wo vith grap	input, put fun nd expo data, n rking w phics fi	interact ctions. ort, supp reading with spre- le, impo	oorted audic audic adshe	file fo file fo video ets, wr graphic	rmat, wo data f iting to a cs data, e	orking from a an xls f exporti	data files with aud a file, e file, readi ing graph ponents i	lio/video xporting ing from ics data,
Unit - III	legends stairs, s contour Control	s, subple stem, co r, contou l Struct	ots, spectors, spectors, spectors, spectors, spectra s	cialized 3d plot	2d plo t - plot ed for,	t- logar 3, bar3,	ithmic bar3h	, polar 1, pie3	, area, b , stem 3	ar, bar , mesh	lot, style th, hist, r ngrid, me if, switch	ose, pie, sh, surf,
Unit - IV	applica		el imag	e proces							ocessing zzy logic	
			I	Text/Re	ferenc	e Books	5					
Text Books.		•		ll, Ashol earson E			Mano	jKuma	ar,MATL	AB ar.	nd its Apj	plication
	•											

	 Ram N.Patel, Ankush Mittal, Programming in MATLAB, A Problem Solving Approach, Pearson Education. Duane Hanselman, Bruce L Littlefield, Mastering MATLAB 7, Prentice Hall. Amos Gilat, MATLAB: An Introduction with Application, Wiley Publisher.
Reference Books	 Jim Sizemore, John P.Mueller, MATLAB for Dummies, Wiley. Stephen J.Chapman, Matlab Programming for Engineers, Thomson-Engineering Publisher, CENGAGE Learning.

	Mtech/CSE/FT/2/DSC1(i): Network Security												
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment						
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
Theory					20 5 5		Attendance						

Course Objectives: To study fundamental concepts of Network Security, security attacks, cryptography, authentication, web security, system and email security.

Course Outcomes	At th	e end	of thi	s cours	e, the st	tudent	will be a	able to:				
CO1	data	encryp	tion s	standard	s, publi	ic-key d		her mode aphy, sec .11i.				
CO2	adva	nced e	encryp	otion st	andard,	RSA,		security t of dig ecurity.				
CO3						-		rity, enc nd wirele	• •		-	s, data
CO4		anism,						ecture, ty ransport				
CO5		exchang						pher mo attacks,				
CO-I	PEO I	Марріі	ng Ma	atrix for	Cours	e Mtecł	/CSE/F	T/2/DS(C1(i)			
Cos	P	EO1		PEC	2]	PEO3		PEO4		P	EO5
CO1		1		1			3		3			3
CO2		2		2			3		3			3
CO3		3		3			3		3			3
CO4		3		3		Ì	3		3			3
CO5		3		3			3		3			3
Average		2.4		2.4		Ĭ	3		3			3
CO·	PO N	Iappin	g Ma	trix for	Course	Mtech	CSE/F	r/2/DSC	1(i)			
Cos	PO1	P02	PO3	P04	PO5	P06	PO7	PO8	P09	P010	P011	P012
CO1	1	3	1	1	1	2	-	-	-	-	1	3
CO2	2	1	1	3	1	2	-	-	-	-	2	3

CO3	3	1	1	3	3	2	_	_	_	-	3	3
CO4	3	3	1	3	1	2		_	-	-	3	3
CO5	3	1	1	3	3	2	_	_	_	_	3	3
Average	2.4	1.8	1	2.6	1.8	2	_	_	_	-	2.4	3
	CO-PSO		ng Ma				h/CSE/F	T/2/DSC	C1(i)		2.1	
Cos		PSO	L		PSO2	1	PSO3	3	PSO	4	P	SO5
CO1		3			3		1		-			3
CO2		3			3		2		-			3
CO3		3			3		3		_			3
CO4		3			3		3		-			3
CO5		3			3		3		-			3
Average		3			3		2.4		-			3
		Mtech/	CSE/		se Cont SC1(i)		rk Securi	ity				
Unit – II	Ciphe symm machi Tradit advan	r mode hetric to nes, ste hional to ced ence	l, cryj echnic ganog olock cryptic	ptanalys ques – graphy. cipher; on stand	substitu data e ard – str	rute-fo ation t ncrypti ructure	orce attacl echnique on stand and expa pplication	s, transpared $ard - e$	position encryptic inctions.	tech	nique d dec	s, rotor ryption,
Unit – III	Hellm Secur TLS r heart-	ity at Treecord p beat pro	excha ranspo rotoco	ort Laye ol, chan	er, web s ge ciphe	f digita ecurity r spec	consider protocol, user authe	re. ations, T alert pro	Franspor	rt Laye landsh	er Sec ake pi	urity, rotocol,
Unit – IV	strate; Wirel	gy. ess LAl	N seci	urity, IE	EE 802.	11i - se	asures, m ervices, o of IP sec	peration		•	- thre	eats and
			T	ext/Ref	ference	Books						
Text Books	Р	earson	Educa	ation			d Networ aphy & N			_		
Reference Book	2. 0	odbole	, Info	rmation	System	s Secu	ork Secur rity, Wile ly India	•		Stamp	o, Info	rmation

	Mtech/CSE/FT/2/DSC1(ii):Advanced Computer Networks												
Course	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

Course Objectives: The objective of this course is to get the students familiar with various networking models, different IP addressing, wireless LANS and latest network technologies.

l												
Course Outcomes	At the	end of	this co	ourse, th	e studer	nt will	be abl	e to:				
CO1	standar	ds, lo	gical a		ng, rout	ting pr			ls, media nain nam			
CO2	for tra	nsmiss	sion a	-	ith the	stand	ards f	ollow	cluding r ed, logic			
CO3	decide	which	netw		dels, ro	outing	protoc	cols, 1	ation of c ogical ad	-		
CO4	-		-	er netwo and wir			nodels	, routi	ng protoc	ols, log	ical addr	ressing,
CO5				lards, ui and wir			lticast	routir	ng protoco	ols, logi	cal addr	ressing,
C)-PEO	Mapp	ing M	atrix fo	r Cours	se Mte	ch/CS	E/FT	/2/DSC1(ii)		
Cos	I	PEO1		PEO	02	F	PEO3		PEO	4	PE	05
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	5
CO3		3		3			3		3		3	5
CO4		3		3			3		3		3	5
CO5		3		3			3		3		3	5
Average		2.4		2.4			3		3		3	5
C	0-PO 1	Mappi	ng Ma	atrix for	Cours	e Mteo	h/CSl	E/FT/	2/DSC1(i	i)		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	2 1 1 3 1 2 3										
CO3	3	3 1 1 3 3 3 3									3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3

CO5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
	CO-PSO	Марр	ing M	atrix fo	r Cours	se Mte	ch/CS	E/FT/2	/DSC1(ii)	ļ	
Cos		PSO1		PS	802		PSO3		PSO ₄	4	PSC	05
CO1		3			3		1		-		3	
CO2		3			3		2		-		3	
CO3		3			3		3		-		3	
CO4		3			3		3		-		3	
CO5		3			3		3		-		3	
Average		3			3	Î	2.4		-		3	
	Mtech/	CSE/I	F T/2/]	Cou DSC1(ii	rse Cor): Adva		Compu	iter Ne	tworks			
Unit I	Transmi Connect	ssion ting L	Media ANs: (: Guideo Connecti	d Media ing Dev	, Ungu ices, B	ided N ackbo	/ledia. ne Netv	ce model works. rnet, Gig		ernet.	
Unit - II	Logical Unicast Intrador	Routi	ng Pro	otocols a	nd Mult	ticast F	Routing		cols			
Unit - III		s Netv ks. IP	work				: LAN	i, pan	, Senso	r Netwo	orks and	l Adhoc
Unit - IV	Domain Space, I	Name DNS ir	e Syste n the I		ne Space Resolut	e, Dom ion.		ume Sp	ace, Dist	ribution	of Nam	e
				Text/Re	eference	e Book	S					
Text Books	4e, 1 2. Jean Mon 3. Man	Morga 1 Walr rgan K 'kus H	n Kau and an auffm Ioffma	ifmann, 2 nd Pravi an, 1999	2007. nVaraiy Ə. Leland	a, Hig	h Perfo eaumo	ormanc nt, Co	e Comm	unicatio	on Netwo	pproach, orks, 2e, iitecture,
Reference Books		rouz A , 2006		rouzan,	Data C	ommu	nicatio	ns and	Networ	king, 40	e, Tata 1	McGraw

	Mtech/CSE/FT/2/DSC1(iii): Wireless Networks												
Course	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance						

Course Objectives: To study fundamental concepts in wireless network, various LAN standards, IP and IPV6 Layer, Transmission protocols and WAN standards.

														-	
Course Outcomes	At th	ne end c	of this c	course, th	ne stud	lent	will be	able to):					Att	he e
CO1	and	wireless	s wide a	area netv	vork.				ork layer,			•	•	wir	
CO2	describe: WLAN technologies, IEEE 802.11 types, IEEE 802.16, Bluetooth, IPV6, mobile ad-hoc network, TCP enhancements for wireless network, UTMS, 3G-MSC, 3G-SGSN, 3G-GGSN, applications of 4G, features and challenges of 5G.											mol	bile		
CO3	illustrate: wireless LAN, system architecture, physical layer, Mac layer, Bluetooth architecture, mobile IP, mobile ad-hoc network, mobile transport layer, TCP improvements, wireless wide area network, HSDPA, features and challenges of 4G, 5G.												nsm		
CO4	enha 3G,4	analyze: WLAN technologies, 802.11b, 802.11a, IEEE 802.16, IPV6, Routing, TCP enhancements, TCP improvements, UMTS core network architecture, firewall, 3G,4G and 5G networks.												Wii	eles
CO5	compare: different Wireless LAN technologies, mobile network layer, mobile transport layer, Mobile IP, mobile ad-hoc networks, protocols, TCP improvements and wireless WAN types.														
CO-PEO Mapping Matrix for Course Mtech/CSE/FT/2/DSC1(iii)															
Cos	P	EO1		PEO2		PEO3 PE			D4 PE			EO5			
CO1		1		1		3			3			3			
CO2		2		2		3			3			3			
CO3		3		3		3		ĺ	3			3			
CO4		3		3		3		ĺ	3		3				
CO5		3		3		3			3		3				
Average		2.4		3 3											
CO-PO Mapping Matrix for Course Mtech/CSE/FT/2/DSC1(iii)															
Cos	PO1	P02	P03	P04	PO5		P06	PO7	PO8	P09	P010	P011	P012		
CO1	1	3	1	1	1		-	-	-	-	-	1	3		

													7
CO2	2	1	1	3	1	-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
	CO-PSO) Map	ping M	atrix fo	r Cours	e Mtech/	CSE/F	T/2/DSC	C1(iii)		ļ		3
Cos	PS	501	Р	SO2		PSO3		PSC	04		PS	505	
CO1		3		3		1		-				3	
CO2		3		3		2		-				3	
CO3		3		3		3		-				3	
CO4		3		3		3		-				3	
CO5		3		3		3		-				3	
Average		3		3		2.4		-				3	
				Course	e Conte	nt							-
	N	/Itech/	CSE/F	Г/2/DSC	21(iii): V	Vireless I	Networ	·ks					
Unit - II	layer, 802.11b, 802.11a – Hiper LAN: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, Radio Layer, Baseband layer, Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX.Unit - IIMobile Network Layer: Introduction - Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation, IPV6- Network layer in the internet- Mobile IP session initiation protocol - mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing.											4	
Unit - III	Congest TCP in	tion co prover	ntrol, f nents:	ast retra Indirect	nsmit/fa TCP, S	st recove nooping	ery, Im TCP,	eless prot plications Mobile 7 FCP over	s of mo FCP, T	obility ime o	- Cla ut fre	assical eezing,	
Selective retransmission, Transaction oriented TCP - TCP over 3G wireless networks.Unit - IVWireless Wide Area Network: Overview of UTMS Terrestrial Radio access network- UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS- GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol, features and challenges of 4G, Applications of 4G, Introduction to 5G vision,5G features and challenges.													
			Т	ext/Refe	rence B	ooks							
Text Books	2012							urson Edu rking", 1e		vier, 20	07.		
Reference Books	 Vijay Garg, "Wireless Communications and Networking", 1e, Elsevier, 2007. William Stallings, Wireless Communications and Networks, Pearson/Prentice Hall of India. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", 2e, Academic Press, 2008. Anurag Kumar, D. Manjunath, Joy Kuri, "Wireless Networking", 1e, Elsevier 2011. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", 1e, Pearson Education, 2013. 												

	MTech/CSE/FT/2/DSC2(i) : Soft Computing												
Course Type	Course	Delivery	Maximu	m Marks	Exam	Assessment							
	Credit	Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
					20 5 5		Attendance						

Course Objectives: The objective of this course is to cover fundamental soft computing concepts with an exposure to ANN, fuzzy Logic, optimization techniques using Genetic Algorithm (GA).

Course OutcomesBy the end of this course, the student will be able to:CO1recognize the concepts of: soft computing and hard computing, simple genetic													
CO1											sim	ple	genetic
				neuron, r									
CO2	understand and describe: the role of genetic algorithm operators, representation of fuzzy												
	set and its operation, types of neural network and activation function including their pros												
	and cons.												
CO3	use: algorithm i.e. genetic algorithm, fuzzy logic, ANN and their constituents												
	for solving optimization problem.												
CO4	differentiate: soft computing and hard computing, operators of genetic algorithm and												
		activation functions of ANN.											
	analyze: fuzzification and defuzzification.												
CO5		compare: soft computing and hard computing, operators of genetic algorithm and											
different activation functions of ANN.													
CO-PEO Mapping Matrix for Course MTech/CSE/FT/2/DSC2(i)													
Cos	F	PEO1 PEO2 PEO3 PEO4 PE										EO5	
CO1		1		1		3			3	3			
CO2		2		2	3			3			3		
CO3		3		3	ĺ	3		3				3	
CO4		3		3		3		3				3	
CO5		3		3		3		3			3		
Average		2.4		2.4 3					3				3
CO-PO Mapping Matrix for Course MTech/CSE/FT/2/DSC2(i)													
Cos													
	PO1	P02	P03	P04	P05	P06	PO7	P08	909	PO10	11		PO12
	P(P(P(PC	P(P(PC	PC	P(PO	PO11		Ы
CO1	1	3	1	1	1	-	-	-	-	-		1	3
CO2	2	1	1	3	1	-					2		3
CO3	3	1	1	3	3			-	-			3	3
CO4	3	3	1	3	1	-	-		-	-		3	3

CO5		3	1	1	3	3	-	-	-	-	-	3	3
Average		2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
CO-PSO Mapping Matrix for Course MTech/CSE/FT/2/DSC2(i)													
COs	PSO1 PSO2 PSO3 PSO4 PS											805	
CO1			3		3			1			-		3
CO2			3		3			2			-		3
CO3			3		3			3			-		3
CO4			3		3			3			-		3
CO5			3		3			3			-		3
Average			3		3		Ĩ	2.4			-		3
				MTe		e Conte C/FT/2/I							
Unit I Introduction to Soft Computing: Overview of Soft Computing, differencebetween soft and hard computing, brief descriptions of different components of soft computing including artificial neural networks, fuzzy logic, genetic algorithms.											ft and ng		
Unit - II	 Genetic Algorithm: Introduction to genetic algorithm, simple genetic algorithm, its representation. Selection: Roulette wheel selection, random, rank, tournament, Boltzmann selection. Crossover and its types: Single point crossover, two point crossover, multipoint crossover, ordered crossover, uniform crossover, crossover for real-valued representation. Mutation and its types: Flipping, Interchanging, reversing, replacement, mutation for real-valued representation, crossover rate, mutation rate and convergence criteria. 												
Unit - III	 Fuzzy Logic: Introduction to fuzzy logic, representation of a classical set, representation of fuzzy set, basic properties of fuzzy sets. Fuzzy set operation: Intersection of fuzzy sets, union of fuzzy sets, complement of fuzzy sets, important terminologies in fuzzy set operations, properties of fuzzy sets, fuzzy arithmetic. Fuzzy Composition: Max-Min composition, max-star composition, max-product composition, max-average composition. fuzzification and de-fuzzification. 												
Unit - IV Artificial Neural Network: Basic of neural network: neuron, artificial neuron, neural network, artificial neural network, perceptron, feed forward, multilayer perceptron neural network, advantage and disadvantage of ANNs. Activation function and types of activation function. perceptron network, XOR problem.													
				Те	ext/Refe	rence B	ooks						
Text Books	 David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley. ZbigniewMichalewicz, Genetic Algorithms +Data Structures = Evolution Programs, SpringerVerlag. 												
Reference Books	 M. Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall. S. Rajasekaran& G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI. S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley - India. Simon O. Haykin, Neural Networks, A Comprehensive Foundation, PHI. 												

	MTech/CSE/FT/2/DSC2(ii):Machine Learning												
Course	Course	Contact	Delivery	Maxim	um Ma	arks		Exam	Assessment				
Туре	Credit	Hours/ Week	Mode	External	Int	erna	ıl	Duration	Methods				
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/				
					20	5	5		Attendance				

Course Objectives: The objective of this course is to enable student to perform experiments in Machine Learning using real-world data.

Course Outcomes	At th	ne end o	f this c	ourse, t	he stude	ent will	be able	e to :						
CO1				f mach	ine lear	ning: d	lata pre	-process	sing, cl	assifica	tion, reg	ression		
		neurons												
CO2	expla	ain the	types of	f: data,	data pr	e-proce	essing re	egressio	n, class	ificatio	n ,unsup	ervised		
	learn													
		uss:arch												
CO3		pply:training and testing data using data pre processing and model selection echniques and classification, regression, clustering techniques according to their												
			and cl	assifica	tion, re	egressio	on, clus	tering t	echniqu	ues acc	ording t	to their		
		olem.	_											
CO4							ng, mod	lel selec	tion, re	gressio	n, classi	fication		
					techniq									
CO5	com	pare tec	hnique	s of: da	ta pre-p	rocessi	ng, sup	ervised a	and uns	supervis	ed learn	ıng.		
CO)-PEO	Mappi	ing Ma	trix fo	r Cours	se MTe	ch/CSI	E/FT/2/I	DSC2(i	i)				
Cos	P	EO1		PEO2	2	F	PEO3		PEO4		PEO	05		
CO1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
CO2		2		2			3		3		3			
CO3		3		3			3		3		3			
CO4		3		3			3		3		3			
CO5		3		3			3		3		3			
Average	2	2.4		2.4			3		3		3			
С	O-PO	Mappi	ng Mat	rix for	Course	e MTeo	h/CSE	/FT/2/D	SC2(ii)				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	3	1	1	1	-	-	-	-	-	1	3		
CO2	2	1	1	3	1	-	-	-	-	-	2	3		
CO3	3	1	1	3	3	-	-	-	-	-	3	3		
CO4	3	3	1	3	1	-	-	-	-	-	3	3		
CO5	3	3 1 1 3 3 3 3												
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3		

	CO-PSO Mapp	ing Matrix for Co	urse MTech/CSE/l	FT/2/DSC2(ii)						
Cos	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	3	1	-	3					
CO2	3	3	2	-	3					
CO3	3 3 - 3									
CO4	3	3	3	-	3					
CO5	3	3	3	-	3					
Average	3	3	2.4	-	3					
Lunit L			2(ii):Machine Lear	2	hine Learning					
Unit – I		Learning and its co	ction to Artificial In omparisons, Applica							
Unit – II		ng structure of data	chine Learning Act , Data Pre-processin							
Unit – III		assification algorith	lassification (Introd nm), Regression (Lin							
Unit – IV	Learning (Clusteri	ng, K-Means).	and its applications ecture of Artificial 1	-	supervised					
		Text/Refere	ence Books							
Text Books		in, Introduction to	ning, McGraw-Hill I Machine Learning -							
Reference Book										

	MTech/CSE/FT/2/DSC2(iii)Artificial Intelligence												
Course	Course	Contact	Delivery	Maxim	um Ma	ırks		Exam	Assessment				
Туре	Credit	Hours/ Week	Mode	External	Int	erna	1	Duration	Methods				
Optional Theory	04	04	Lecture	70	20	30 5	5	3 Hours	TEE/MTE/ Assignment/ Attendance				

Course Objectives: Aim of this course is to familiarize the students with various techniques of artificial intelligence like predicate calculus, production rules; expert systems.

Course Outcomes	At th	e end	of this o	course,	, the stud	dent w	vill be al	ole to	:				
CO1		define: artificial intelligence terms, types of search strategy, production system, knowledge representation, learning techniques and genetic algorithm terminologies.											
CO2												ulus, kno	
												lligent b	
CO3		ncluding intelligent editor, learning by induction and dealing with uncertainty.											
C03		se: search strategy, genetic algorithm, fuzzy logic and learning technique. lassify types of: search strategy, production system, learning, operator of genetic											
												uncertain	
CO5												ning, ope	
	-	tic alg rtainty	-	n, kno	wledge	repre	esentatio	on ai	nd ap	proa	aches t	hat deal	ls with
CO-	•			trix fo	r Cours	se MT	ech/CS	E/FT	/2/DS	C26	iii)		
Cos						1		_,				PF(75
CO1	1	PEO1 PEO2 PEO3 PEO4 PEO5 1 1 3 3 3											
CO2		2		2			3			3		3	
	1												
CO3	1	3		3			3			3		3	
CO4	1	3		3			3			3		3	
CO5		3		3			3			3		3	
Average	I	.4		2.4			3			3		3	
CO	-PO N	lappii	ng Mat	rix for	Course	e MTe	ch/CSE	E/FT/	2/DSC	2(ii	ii)		
Cos													
	PO1	P02	P03	P04	P05	P06	PO7	P08	60d		P010	POII	P012
	P(P(P(P(P(P(P(P	PC		РС	РС	PC
	1	2	1	1	1							1	2
CO1	1	3	1	1	1	-	-	-		-	-	1	3
CO2	2	1	1	3	1	-	-	-		-	-	2	3
CO3	3 1 1 3 3 3 3												
CO4	3	3	1	3	1	-	-	-		-	-	3	3
CO5	3 1 1 3 3 3 3												
Average	2.4	1.8	1	2.6	1.8	-	-	-		-	-	2.4	3

C	O-PSO Mappi	ng Matrix for Co	urse MTech/CSE/	FT/2/DSC2(iii)	
Cos	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	-	3
CO2	3	3	2	-	3
CO3	3	3	3	-	3
CO4	3	3	3	-	3
CO5	3	3	3	-	3
Average	3	3	2.4	-	3
	MTecl	Course (n/CSE/FT/2/DSC2	Content 2:Artificial Intellig	gence	
Unit – I	The predic Clausal for Knowledge	ate calculus: Synta m, inference rules, e representation:	x and semantic for , resolution and uni	ation-Associative r	c and FOPL,
Unit – II	search; Sea first with algorithm,	rch algorithms- u iterative deepenin mini-max etc.), co	ninformed search ng) and informed	• •	dth first, depth
Unit – III	production Control of Rule based expert syst Nonmonot	systems, Decomposed in production lexpert systems: A tems - Bayesian production	osable and non-dec on systems. Architecture, devel robability theory, asoning with belie	commutative and r composable product opment, managing Stanford certainty fs, Fuzzy logic, De	tion systems, guncertainty in g factor algebra,
Unit – IV	learning by Genetic alg	induction.	representation, End	ning by automata, i coding Schemes, O	ntelligent editors, perators: Selection,
		Text/Refere	ence Books		
Text Books	Benjan 2. Dan W 3. Wills J	nin/Cummings Pub . Patterson, Introd . Nilsson, Principle	blishing Company, uction to Artificial es of Artificial Inte		ublishing House.
Reference Books	2. Eugene			ted, Narosa Publish troduction to Art	ning House. ificial Intelligence,

MTech/CSE/F	T/2/CC9: \$	Softwar	e Lab b	ased on I	MTech/	CSE/FT	C/2/CC	7(Adva	anced	Web Te	chnolog	gy)		
Course Type	Course	Con	itact	Deliv	ery	Maxii	num M	um Marks Exam Assessmen						
	Credit	Hours	/Week	Moc	le]	External	In	ternal	Dı	iration	Me	thods		
Practical	02	0	4	Lab Wo	ork	50		-	3	Hours		EE/ cal File		
Instructions to pap panel of internal an practical and a viva	d external e voce exam	xaminer	s. Exam	inees wil	l be eval	luated or	n the ba	ases of	practic	cal file, j	perform	-		
Course Objectives constructs of HTMI						dents ha	nds on	praction	ce with	program	nming			
Course Outcome	At the	end of tl	nis cours	se, the stu	ident wil	ll be able	e to:							
CO1				epts of H and con					L5, XN	ML, Jav	aScript,	, PHP,		
CO2	describ	e: HTM	L comn	non tags,	HTML5	i capabil	lities ar	nd use			Script c	oncept		
CO3	perform search	with PHP & MySQL, search engine techniques and optimize search results. perform: HTML tags with XML, JavaScript with PHP and MySQL queries, optimize search engine result using SEO techniques, Webhosting and different type of CMS technologies.												
CO4	illustra ranking	te: relati g using	search	of HTMI engine l Drupal	optimiz	ation te	echniqu	ies, ar				•		
CO5	determ evaluat	ine: clie te: queri	nt side c es on tab	HTML5, or server a ole and fo	side Java orms usin	aScript. ng MyS	QL.			XML.				
CO6	design MySQ	: webpag L in web	ges usin ppages,n	g HTML nodify we	.,CSS,XI ebpages	ML and to achie	JavaSo ve high	cript, g er ranl	enerate		· ·	using		
	CO-P	EO Ma	pping N	latrix fo	r Cours	e MTecl	h/CSE/	/FT/2/	CC9					
Cos	PEO	l	PE	EO2		PEO3		PE	EO4		PEO:	5		
CO1	1			1		3			3		3			
CO2	2			2		3			3		3			
CO3	3			3		3			3		3			
CO4	3			3		3			3		3			
CO5	3			3		3			3		3			
CO6	3			3		3			3		3			
Average	2.5		2	2.5		3			3		3			
	CO-I	-PO Mapping Matrix for Course MTech/CSE/FT/2/CC9												
COs	PO1	PO2	PO3	PO4	PO5	PO6 PO7 PO8 PO9 PO10 PO11 PO1					PO12			
CO1	1	3	1	1	1	-	-	-	-	-	1	3		
CO2	2	1	1	3	1	-	-	2		3				
CO3	3	1	1	3	3 3		3	3						
CO4	3	3	1	3	1	-	-	-	-	-	3	3		
CO5	3	1	1	3	3	-	-	-	-	-	3	3		

CO6	3	3	3	3	3	3	-	-	-	-	-	3	3									
Average	2.5	2	1.33	2.66	2	2	-	-	-	-	-	2.5	3									
	CO-P	SO Maj	pping M	latrix fo	r Co	urse	MTech	/CSE/	FT/2/	CC9												
COs	PS	501		PSO2			PSO3		F	SO4		PSO	5									
CO1		3		3			1		-			3										
CO2		3		3			2			-	3											
CO3		3		3			3			-		3										
CO4		3		3		3		3 -		-		3										
CO5		3		3 3 -		3		3		3		3		3 -		-		-			3	
CO6		3		3		3 -		3		-			3									
Average		3		3			2.5	.5 -			3											

MTech/CSE/	MTech/CSE/FT/2/CC10: Software Lab based on MTech/CSE/FT/2/CC8 (MATLAB Programming)												
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File						

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with programming constructs of MATLAB and their usage. This course is based on MTech/CSE/FT/2/CC8: MATLAB Programming.

Course Outcomes		At the end of this course, the student will be able to: lefine: features, commands, data types, hierarchy of operations, matrix, tools, functions											
CO1							-	-					
			.t/outpu	it, file h	andling	and gra	aphics,	control	l structu	re and t	oolboxe	es used	
		TLAB.		:.:. C	- 4			1-44	1 '		- 6	-41-	
CO2											of oper		
				MATLA		, iuncu		aled to g	graphics	, contro	l structu	ile allu	
CO3						enus to	olbars	input/c	nitonit fr	inctions	file ha	ndling	
005		use: commands, operations, tools, menus, toolbars, input/output functions, file handling, functions related to graphics, 2D and 3D plotting, control structure, debugging,											
				& video			-	-			-,	00 0,	
CO4										natrix, t	ools, di	fferent	
				raphics									
CO5											ing tech	nnique,	
				olbox o							1 45	1.05	
CO6				-	-			-			ds, 2D a		
				bois, fea			, iuzzy	y logic,	neural	network	and in	lage &	
		•	Ū.						2/0010				
	CO-P	EO Maj	pping N	Aatrix f	or Cou	rse MT	ech/C	SE/F [*] 17.	2/CC10				
Cos	PE	01		PEO2		P	EO3		PEO4		PEC)5	
CO1	-	1		1			3		3		3		
CO2	-	2		2			3		3		3		
CO3		3		3			3		3		3		
CO4		3		3			3		3		3		
CO5		3		3			3		3		3		
CO6		3		3			3		3		3		
Average	2	.5		2.5			3		3		3		
	CO-P	O Map	ping M	latrix fo	or Cour	se MTe	ch/CS	E/FT/2	/CC10				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	-	-	-	-	1	3	
CO2	2	1	1	3	1	-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	_	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	

CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.33	2.67	2	-	-	-	-	-	2.5	3
	CO-P	SO Maj	oping N	Aatrix fo	or Cou	rse MT	ech/C	SE/FI	C/2/CC10			
Cos	F	SO1		PSO2		P	SO3		PSO4		PSC	5
CO1		3		3			1		-		3	
CO2		3		3			2		-		3	
CO3		3		3			3		-		3	
CO4		3		3			3		-		3	
CO5		3		3			3		-		3	
CO6		3		3			3		-		3	
Average		3		3			2.5		-		3	

	MTech/CSE/FT/3/CC11: Python Programming												
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
Theory					20 5 5		Attendance						

Course Objectives: The objectives of this course is to get the students familiar with basic concepts of Python programming, decision making and functions, file handling and object oriented programming concepts, database programming and to implement machine learning concepts.

Course Outcomes	At the	end of	this cou	rse, the	student v	vill be	able to:						
CO1					ig, structu pts, pytho			tateme	nts, op	perators,	lists ,	object	
CO2	·				trol state thon prog		•	, OOP	rs, file	handli	ng cor	ncepts,	
CO3					such as n		•			ns.			
CO4		orize: da n librario		es, dic	tionaries,	condi	tional &	& cont	trol sta	atement	s, fun	ctions,	
CO5	compa librari		types,	diction	aries, con	ditiona	l & con	trol sta	atemen	ts, funct	tions, p	oython	
CO6	design	: basic a	and adv	anced a	pplication	ns in py	ython.						
	CO-PE	O Map	ping Ma	atrix fo	or Course	MTec	h/CSE/	FT/3/	CC11				
Cos		PEO1			PEO2		PEO3	3		PEO4	P	EO5	
CO1		1			1		3			3		3	
CO2		2			2		3			3		3	
CO3		3			3		3			3		3	
CO4		3			3		3			3		3	
CO5		3			3		3			3		3	
CO6		3			3		3			3		3	
Average		2.5			2.5		3			3		3	
	CO-PO) Mapp	ing Ma	trix fo	r Course	MTech	n/CSE/I	F T/3/C	C11				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	-	-	-	-	1	3	
CO2	2	2 1 1 3 1 2 3											
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	

2

CO5		3	1	1	3	3	_			_	-	3	3
CO6		3	3	3	3	3	-		_	-	-	3	3
Average		2.5	2	1.3	2.6	2	-	-	-	-	-	2.5	3
	C	O-PS	O Map	ping M	atrix fo	or Course	e MTe	ch/CSE/	FT/3/0	CC11			
Cos			PSO			PSO2		PSO	3	I	PSO4	Р	SO5
CO1			3	3							-		3
CO2			3			3	3 2 -				-		3
CO3			3			3		3			-		3
CO4			3			3		3			-		3
CO5			3			3		3			-		3
CO6			3			3		3			-		3
Average			3			3		2.5			-		3
	1	Γ	MTech/	CSE/F		se Conter C11: Pyth		ogramm	ing				
Unit – I Unit – II	flow basic data Dicti	, Interj c Oper type. ionarie	preter sl ators, D Python s.	hell, To Declarin Casting	kens, I g and u g, Scop	vthon, Usi dentifiers using Nur be of a V e and eli	, Rese neric d ariable	rved key lata type e, Work	words, es: int, ing wi	, Litera float, th: Str	als, Var complex ing, Lis	iables, x, using t, Tup	Python g string les and
	Brea Mod Pack	k and l lules a age Co	Else, or nd Buil ontent a	ganizin t-in Mo nd Doc	g pytho odules. umenta	on codes u Package ation. Pow ackages.	ising f s: Pac	unctions kage Ty	, Modu vpes, Ii	iles: Ci nporti	reating l ng Pack	Module age, V	e, using 'iewing
Unit – III	Attri Enca using File	butes a psulat g Oops Handl	and Des ion, Ov concep ing: Cr	structors verloadi ots. eating,	s, Built ng Ope Openir	Concept o -in Class erators, E ng, Closin rations.	Attrib Data H	utes, Inh iding, E	eritanc Exceptio	e, Met on Ha	thod Ov ndling,	erridin Progra	g, Data mming
Unit – IV	Join, Pyth	, Array on Pan	Split, H das: Da	Random ita Fran	nes, Rea	rray Inde ad CSV, A catter, Ba	Analyz	ing Data	and C	leanin	g Data.	eshape	, Array
	ı			Т	ext/Ref	erence B	ooks						
Text Books	 Chun, J Wesley, Core Python Programming, 2e, Pearson, 2007. E. Balagurusamy, Introduction to Computing and Problem Solving Using Python, McGraw Hill Education, 2016. 												
Reference Books		-			-	hon, 2e, 0 on, 4e, 0		-					

	MTech/CSE/FT/3/CC12:Research Methodology												
Course	Course	Contact	Delivery	Maxim	um Ma	rks		Exam	Assessment				
Туре	Credit	Hours/ Week	Mode	External	Int	erna	.1	Duration	Methods				
Optional Theory	04	04	Lecture	70	20	30 5	5	3 Hours	TEE/MTE/ Assignment/ Attendance				

Course Objectives: The objective of this course is to get the students familiar with different aspects of research methodology, namely, research design, collection and analysis of data, and interpretation of results.

Course Outcomes	At th	a and	of this	Course	the stu	idant u	rill be o	hla to ·					
		At the end of this course, the student will be able to :											
CO1		define: objectives, hypothesis, interpretation, data analysis, data collection, research design and method, interpretation, data analysis, sampling.											
CO2											ata colle	ection	
002			0		• 1		-	n, data a		•		cetton,	
			•			-			•	-	-		
CO3		llustrate: measurement. data collection, processing, sampling, analysis and its											
			reports.		1'		.1 1	1 4	11	4 1			
CO4		-			-	-	thoas,	data co	ollectio	on tech	niques,	reports	
		and data processing strategies. perform: data analysis.											
CO5	-					date		ation to	ahnia	100 40	norta a	nd data	
COS		-	g strate	-	lethous	, uata	i cone	ction te	chinq	ues, re	ports a	nd data	
CO6	-		sis, repo	-									
00			earch to										
	-		rive): re										
C	O-PEC) Map	oping M	Iatrix	for Co	urse M	[Tech/(CSE/FT/	3/CC1	2			
Cos	PE	201		PEO	2		PEO3		PEO4	ŀ	PE	05	
CO1		1		1			3		3		-	3	
CO2		2		2			3		3			3	
CO3		3		3			3		3			3	
CO4		3		3			3		3			3	
CO5		3		3			3		3			3	
CO6		3		3			3		3			3	
Average	2	.5		2.5			3		3			3	
0	CO-PO	Map	ping M	atrix f	for Cou	rse M	Tech/C	SE/FT/3	3/CC12	2			
Cos													
	1	D1 02 03 03 03 04 05 06 07 08 09 09 010 011 012											
	P(PO1 PO2 PO3 PO4 PO5 PO6 PO6 PO8 PO8 PO10 PO11 PO11 PO11											
	-							_		_			
CO1	1	3	1	1	1	-	-	3	-	3	1	3	

CO2	2	1	1	3	1	-	-	3	-	3	2	3	
CO3	3	1	1	3	3	-	-	3	-	3	3	3	
CO4	3	3	1	3	1	-	-	3	-	3	3	3	
CO5	3	1	1	3	3	-	-	3	-	3	3	3	
CO6	3	3	3	3	3	-	-	3	-	3	3	3	
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3	
C	O-PSC) Map	oping M	latrix	for Co	urse M	[Tech/C	SE/FT/	3/CC12	2			
Cos	PSO	D1	P	SO2		P	SO3		PSO4	+	PSC)5	
CO1	3			3			1		3		3		
CO2	3			3			2		3		3		
CO3	3			3			3		3		3		
CO4	<u>3</u> <u>3</u> <u>3</u> <u>3</u>												
CO5	3 3												
CO6	3 3 3 3												
Average	3			3			2.5		3		3		
Unit – I	Course Content MTech/CSE/FT/3/CC12: Research Methodology												
	form prob prim	ulatin lem, i ary ai	g the reimporta	esearcl nce of ondary	n probl literat source	em so ure rev reviev	electing view in ws, hyp	the pro definin	blem, i g a pro	necessity oblem, 1	tion: defi y of defi literature alities of	ning the	
Unit – II Unit – III	good samp meas valid	l design oling suremo lity an colle	gn, imp procedu ent: co d reliab ction ar	ortant are, ch ncept ility. lo nd anal	concept aracter of mea evels of tysis: ex	ots relatistics of asurem	ting to of a go ent, pro- prement	research ood sam oblems - nomina e researc	n desig ple des in mea al, ordin h, obse	n, criter sign, sa asureme nal, inter ervation	ria of sel mpling r nt in re rval, rational and colle	nethods, search - o. ection of	
	with	stati	stical j	packag	es, hy	pothes	is testi	-	eraliza	tion an	gies, data d interp ges).	-	
Unit – IV	preca impa plagi types	aution act fac arism s of re	in inter tor of jo . reports port- te	pretation purnals s and t chnica	on, lay , ethica hesis w l report	out of a l issue riting: s and t	a researd s related structur hesis, w	l to publ e and co	, journa ishing, ompone vnopsis,	als in co plagiari nts of sc	retation, mputer so sm and so cientific r ct, illustra	elf- eports,	
]	Fext/R	eferen	ce Boo	ks						
Text Books	I	RBSA	Publish	ners, 20	002.						ch Metho ques. No		

	3.	International, 1990 Santosh Gupta, Research Methodology and Statistical Techniques, Deep & Deep Publications Pvt. Ltd., 2008
Reference Books		N. Gurumani, Scientific Thesis Writing and Paper Presentation, MJP Publishers. Montgomery, Douglas C, Design and Analysis of Experiments, Wiley India Pvt. Ltd.

	MTech/CSE/FT/3/DSC3(i)IoT and Cloud Computing												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance						

Course Objectives: To study the fundamental concepts of cloud computing, its enabling technologies, cloud service modes and security concerns, to learn core issues of Internet of Things, IoT communication protocols and security concerns.

Course Outcomes	By the	e end of	this cou	irse, the	student	will be	able t	o:				
CO1	list/de	ations, j fine cl	orinciple oud co	amewor es of we mputing cture, se	b conne g: evolu	ectivity. ution,	charac	teristics	commu , work		n chal rvice n	lenges, nodels,
CO2	challer unders model	nges, ap stand ar s, virtua	plication d descr	, archite	ciples o ud comp ecture, s	f web couting: ecurity	onnect evolut challe	ivity. ion, cha nges an	aracteris d risks.	C	ommun orking, s	
CO3	use clo	oud con	nputing	services	in diffe	erent fie	lds of	applica	tions.			
CO4	diagra	mmatis	e cloud	ramewo computi	ing: serv	vice mo	dels, s	ervice-o	oriented	archite	cture.	
CO5	applic	ation ar	eas, and	commun l protoco comput	ols.			·			g techno rvisors.	logies,
	CO-PE	O Map	ping M	atrix fo	r Cours	se MTe	ch/CS	E/FT/3	DSC3	i)		
Cos	PE	01		PEO2		P	EO3		PEO4	ŀ	PEC)5
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
Average	2	.4		2.4			3		3		3	
	CO-PO) Mapp	oing Ma	trix for	Cours	e MTec	h/CSE	C/FT/3/1	DSC3(i))		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3

Average	2.4 1.8	1 2.6 1.8	- - -		2.4 3									
	CO-PSO Mapping	g Matrix for Cour	se MTech/CSE/F7	[/3/DSC3(i)										
COs	PSO1	PSO2	PSO3	PSO4	PSO5									
CO1	3	2	1	-	3									
CO2	3	2	2	-	3									
CO3	3	2	3	-	3									
CO4	3	2	3	-	3									
CO5	3	2	3	-	3									
Average	3 2 2.4 - 3													
	MTech/CSE	Course Content MTech/CSE/FT/3/DSC3(i)IoT and Cloud Computing Internet of Things: What is the IOT and why is it important, IoT Conceptual Framework												
Unit I	IoT Architectural Communication, I	view, Technology l Layered Architectu	Behind IoT, Source re (3 & 5 Layere	es of IoT, Exam ed) of IoT, Phy	ples of IoT, M2M									
Unit - II	Applications of Id Health & Fitness Energy conservation Design principles	 Logical Design, Domain-specific IoTs, Security Issues of IoT. Communication challenges related to IoT, Enabling technologies for IoT. Applications of IoT: Home Automation, Smart Cities, Social Life and Entertainment Health & Fitness, Smart Environment and Agriculture, Supply Chain and Logistics Energy conservation. Design principles for web connectivity: Web Communication protocols for Connected Devices, Message Communication Protocols for Connected Devices. 												
Unit - III	Evolution of cloud Works, Role of net	loud Computing: computing, charac tworks in Cloud con aS, PaaS, SaaS, Pu	teristics of cloud c nputing.	computing, How										
Unit - IV	Balancing and Vir Hypervisors and i	rtualization, Resoutualization. tualization. ts types, Service C and Risks of Cloud	Driented Architect											
	•	Text/Reference	e Books											
Text Books	 Text/Reference Books Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing a Practical Approach, Tata McGraw Hill, New Delhi, 2010 Robert Elsenpeter, Toby J. Velte, Anthony T. Velte, Cloud Computing: A Practical Approach, 1e, Tata McGraw Hill Education, 2011. Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Cloud Computing for Dummies, Wiley Publishing, 2010 													
Reference Books	 Dummies, Wiley Publishing, 2010 RajkumarBuyya, James Broberg, AndrzejGoscinski, Cloud Computing- Principles and Paradigms, Wiley, 2011. Raj Kamal, Internet of Things-Architectures and Design Principles, McGraw Hill Education, 2017 													

	MTech/CSE/FT/3/DSC3(ii)Grid Computing												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
					20 5 5		Attendance						

Course Objectives The objective of this course is to study, learn, and understand the concepts of grid computing.

1 8												
Course Outcomes	By the	e end of	this cou	urse, the	student	will be	able t	0:				
CO1	govern		OGSA,	puting WSRF,								
CO2	WSDI		ernance	ibe: clus e, OGSA uling.			•	-	•	-	•	
CO3				: concep toolkit,						-	and sha	ring,
CO4	OGSA catego	A-DAI, o prize: c	cluster lusters,	chitectu protoc trategies	ols for	cluste	ers, n	-				
CO5	compa	<u> </u>	evaluate	e: cluster			<u> </u>	ers, sche	duling	policies	, strateg	ies for
	CO-PE	O Map	ping Ma	atrix fo	r Cours	е МТес	h/CSl	E/FT/3/	DSC3(i	i)		
Cos	PE	01		PEO2		P	EO3		PEO4		PEC)5
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3		3	
CO 5		3		3			3		3		3	
Average	2	.4		2.4			3		3		3	
	CO-PC) Mapp	ing Ma	trix for	Course	e MTecl	h/CSE	/FT/3/I	DSC3(ii)		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	1	3	1	1	1	-	-	-	-	-	1	3
CO.2	2	1	1	3	1	-	-	-	-	-	2	3
CO.3	3	1	1	3	3	-	-	-	-	-	3	3

			1		1	1	1	1	1			
CO.4	3	3	1	3	1	-	-	-	-	-	3	3
CO.5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1 • • •	2.6	1.8	- N/T	-	-	-	-	2.4	3
	1		ping M		1			E/F 1/.	3/DSC3(i	· .		
COs	F	PSO1		PSO2	2	F	PSO3		PSO ₂	1	PSC	
CO1		3		2			1		-		3	
CO2		3		2			2		-		3	
CO3		3		2			3		-		3	
CO4		3		2			3		-		3	
CO5		3	2 3 $ 3$									
Average		3		2			2.4		-		3	
	Course Content MTech/CSE/FT/3/DSC3(ii)Grid Computing											
Unit I	Compu Techno require trends i Web S	ting, e-(blogies a ments i n Large ervices	Governa and Ar n Grid Data C and th	ance and chitectu Comput drids.	the Gr ting, St ting Orie	id Grid (tandard	Compusion of the computer of t	uting: Grid (ecture	ing, Web Issues in Computin : Service	Data (g, Rec	Grids, Fu ent tech	nctional nologies
Unit - II	WSRF, Globus Manage GT4 Ar The G	WSRF Toolk Toolk ement, l rchitectu Frid an	Specifi it: Hist Monitor ure, GT nd Dat	cation ory, vers ing and 4 Contai abases:	sion, A Discov ners. Requi	pplicati ery, Se rements	ions, A curity, s, Stor	pproa Data	Stateful V ches and Choreogr Request offering C	Benefi aphy an Broker	ts, Infras nd Coorc , Integra	structure lination, ation of
Unit - III	Cluster Cluster Resourd Networ	, Catego r Midd ce Mana r king, I	ories of leware: agemen Protoco	clusters. Evels: Levels: t and Scl Ls and L	and L hedulin /O for	ayers o g, Clus cluster	of Sing ter pro s: Netv	gle Sy gramn workin	Definition restem Ima ning Envi ng and Int 1, Myrine	age, De ronmer	esign ob t and To ection/Sy	jectives, ools. witching
Unit - IV	clusters Cluster parallel for high Process resourc Load	s of clus r Techn l compu n availal s Sched e utiliza	ters, Sy nology : nting, ty bility, F luling: . ation, So g and	stem mo for Higl pes of f ailure/R Job man chedulin	nitorin h Avai failures ecovery agemer g polici	g, Glob lability and er cluste nt Syste es.	al Cloo : High rors, c rs. em, Res	cks Sy avail luster source	imple clu nc. ability cl architect manager Strategie	usters, ures an nent sy	high ava d config stem, po	ailability gurations licies of
				Text/Re	eferenc	e Book	s					
Text Books	2. The		Bluepri						ture, Ian	Foster,	Carl Kes	sselman,

	3. Grid Computing for Developers, Vladimir Silva, Charles River Media, January 2006.
Reference Books	 Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies, High Performance Computing: Paradigm and Infrastructure, Laurence Yang and MinyiGuo (editors), Wiley Press, New Jersey, USA, June 2005. Grid Resource Management: State of the Art and Future Trends, JarekNabrzyski, Jennifer M. Schopf, Jan Weglarz, International Series in Operations Research & Management Science, Springer; 1e, 2003.

	MTech/CSE/FT/3/DSC3(iii)Quantum Computing							
Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment	
	Credit	Hours/Week	rs/Week Mode		Internal	Duration	Methods	
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance	

Course Objectives: The objective of this course to understand the basic concept of quantum computing it's relation to mathematics and physics, quantum circuits, quantum information and cryptography, quantum algorithms.

Course Outcomes	By the	By the end of this course, the student will be able to:											
CO1		define quantum computation: mechanics, circuit, multiple ,teleportation, cryptography								aphy			
		ogramn											
CO2		understand and describe quantum computation: mechanics, circuit, multiple, teleportation, quantum algorithms cryptography and programming languages.											
	interp	ret: erro	r correc	tion and	l compu	tation o	f fault	-toler	ant.				
CO3									s, physics				
									complexi				
CO4	-	ze: quar olerant	-	•	ning lar	iguages	, quar	ntum	computati	ions, er	ror cori	rection,	
CO5					s classi	cal and	auanti	ım in	formation	theory	classics	al gates	
005		iantum		50111111	5, C 1 U 551	cui unu	quant	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rormation	uncory,	clussice	ii gutos	
	evaluate: classical computation on quantum computers.												
CO-PEO Mapping Matrix for Course MTech/CSE/FT/3/DSC3(iii)													
Cos	PE	01		PEO2		P	PEO3		PEO4	PEO4		PEO5	
CO1		1		1			3		3		3		
CO2		2		2			3		3		3		
CO3		3		3			3		3		3		
CO4		3		3			3		3		3		
CO 5		3		3			3		3		3		
Average	2	.4		2.4			3		3		3		
	CO-PO	Mappi	ing Mat	trix for	Course	MTech	n/CSE	/FT/3	B/DSC3(iii	i)			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 PO9	PO10	PO11	PO12	
CO.1	1	3	1	1	1	-	-	-	-	-	1	3	
CO.2	2	1	1	3	1	-	-	-	-	-	2	3	
CO.3	3	1	1	3	3	-	-	-	-	-	3	3	
CO.4	3	3	1	3	1	-	-	-	-	-	3	3	
CO.5	3	1	1	3	3	-	-	-	-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	

CO-PSO Mapping Matrix for Course MTech/CSE/FT/3/DSC3(iii)								
COs	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	2	1	-	3			
CO2	3	2	2	-	3			
CO3	3 2 3 - 3							
CO4	3	2	3	-	3			
CO5	3	2	3	-	3			
Average	3	2	2.4	-	3			
	MTech/CS	Course Cor SE/FT/3/DSC3(iii)		ting				
Unit I	Quantum bits and	Quantum Computa quantum operation qubit, multiple qub	ns, Postulates of c	quantum mechan	ics, Bloch sphere			
Unit - IIBackground Mathematics and Physics: Hilber space, Probabilities and measurements, entanglement, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. Quantum Circuits: single qubit gates, multiple qubit gates, design of quantum circuits.								
Unit - III	Unit - III Quantum Information and Cryptography: Comparison between classical and quantum information theory. Bell states. Quantum teleportation. Quantum Cryptography, no cloning theorem, Quantum programming languages, Probabilistic and Quantum computations.							
Unit - IV	between quantum algorithm, Shor fac	hms: Classical co and classical comp ctorization, Grover correction: Graph on.	lexity classes. Dei search.	utsch's algorithm	n, Deutsch's-Jozsa			
		Text/Referenc	e Books					
Text Books	 An Introduction to Quantum Computing Algorithms, Pittenger A. O., 2000. Quantum computing explained, David McMahon, John Wiley & Sons, Inc. Publication 2008 Quantum computation and quantum information, Michael A. Nielsen and Isaac L. Chuang, Cambridge University Press 2010 Introduction to Quantum Mechanics, 2e, David J. Griffiths, Prentice Hall New Jersey 1995 							
Reference Books	 1995 Quantum computing for computer scientists, Noson S. Yanofsky, Mirco A. Mannucci, Cambridge University Press 2008 Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II: Basic Tools and Special Topics, Benenti G., Casati G. and Strini G., World Scientific, 2004. 							

	MTech/CSE/FT/3/DSC4 (i): Data Warehousing and Data Mining								
Course Type	Course Type Course		Delivery	Maxim	um Marks	Exam	Assessment		
	Credit	Hours/Week Mode		External	Internal	Duration	Methods		
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance		

Course Objectives: The objective of this course is to get the students familiar with different concepts of data warehouse and data mining, namely, OLAP, Association rule mining, classification and prediction.

Course Outcomes	At the end of this course, the student able to :
CO1	define: the concepts of data mining, data pre-processing, outliers, data warehouse,
	OLAP, association rule mining, data classification prediction and cluster Analysis.
CO2	describe: key process of data mining ,data warehousing, OLAP, data warehousing to
	data mining, association rule, classification and prediction methods.
CO3	apply: OLAP technology and association rules.
	use: decision induction, bayesion and back propagation classification methods.
CO4	differentiate: operational database systems and data warehousing, single dimensional
	and multidimensional association rules, and between various data mining classification
	methods.
CO5	evaluate: data mining and data warehouse, OLAP technology, single and multi-
	dimensional association rule.

	CO-PEO Mapping Matrix for Course MTech/CSE/FT/3/DSC4(i)												
COs		PEO1		PEC	PEO2		PEO3		PI	EO4	Pl	PEO5	
CO1		1		1			3			3		3	
CO2		2		2			3			3		3	
CO3		3		3			3	Ì		3		3	
CO4		3		3			3	Ì		3		3	
CO5		3		3			3			3		3	
Average		2.4		2.4	2.4 3		3		3			3	
	CO-P	O Mapp	ing Ma	atrix fo	or Cour	se MT	ech/CS	E/FT/	3/DSC4	l(i)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	-	-	-	-	1	3	
CO2	2	1	1	3	1	-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
	CO-PSO Mapping Matrix for Course MTech/CSE/FT/3/DSC4(i)												

COs	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	3	1	-	3				
CO2	3	3	2	-	3				
CO3	3	3	3	-	3				
CO4	3	3	3	-	3				
CO5	3	3	3	-	3				
Average	3	3 3 2.4 - 3							
	Course Content MTech/CSE/FT/3/DSC4(i): Data Warehousing and Data Mining								
Unit I	Unit I Data Mining: Introduction: Motivation, Importance, Knowledge discovery process, data mining, kind of data, Functionalities, interesting patterns, classification of data mining system, Major issues, Data Mining Primitives. Data Pre-processing: Data cleaning, Data Integration and transformation, Data reduction, Discretization and concept hierarchy generation. Data visualization. Outliers, Types of Outliers and challenges of Outlier Detection								
Unit - IIData warehouse and OLAP Technology for data mining: data warehouse, difference between operational data base systems and data warehouse, A Multidimensional Data Model, Data warehouse Architecture, Data warehouse Implementation, data warehousing to data mining, Data warehouse usage.									
Unit - III	transactional da Mining multid	le Mining: Mining tabases, mining mu imensional associa rom association n ing.	ltilevel association tion rules from	rules from trans relational data	action databases, bases and data				
Unit - IV	Unit - IVData Mining-Classification and Prediction: issues regarding classification and prediction, classification by decision induction, Bayesian classification, classification by back propagation, classification based on concepts from association rule mining other classification methods.Cluster Analysis: Introduction, Types of Data, Applications and Trends in Data Mining.								
		Tout/Dafar	o Doolya		-				
	1	Text/Referenc							
Text Books.	2. Adruaans, L	Stephen Smith, Kor Longman, Addison-v esley Longman, Dat	vesley Data Mining,	_					
Reference Books	 Chanchal Singh, Data Mining and Warehousing, Wiley. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufmann Publishers, 2001. 								

	MTech/CSE/FT/3/DSC4(ii)Big Data Analytics									
Course Type		Course	Contact	Deliver	ry N	Maximu	m Marks	Exam	Asse	essment
		Credit	Hours/ Week	Mode	E	xternal	Internal	Duration	Me	ethods
Optional Theory		04	04	Lecture	e 70)	30	3 Hours	Assig	MTE/ gnment/ ndance
content of the course. The will be consisting of short first question, there shall attempt one question from	Instructions to paper setter for Final Term Examination: The Final Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.									
Course Objectives: The architecture and application	ons; NoSQI	and HA	DOOP.	-				-	of big	data, its
	At the end								<u> </u>	
	define: Big tools andH HDFS, Hao	adoop, H	adoop Stre	eaming, I	Hadoo	op Echo	o System, l	BM Big D	Data St	
	understand and describe: Big Data and Hadoop, Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, Hadoop Distributed File System, command line interface, job scheduling, shuffle and sort, task execution, Hadoop Ecosystem, Pig, HiveQL, Hbase.									
CO3	apply and command l	use: Ap	ache Hado	oop, HD	OFC,	HBasic	, Big Dat			
	classify: B shell, Hive		nd Hadoo	p, Big I	Data A	Analytic	cs, Apache	e Hadoop,	HDFS	,Hive
CO5	Compare fe	eature set	of Pig, Ha	doop, H	DFC					
CC	-PEO Maj	pping Ma	atrix for C	course M	ITech	/CSE/F	T/3/DSC4	l (ii)		
COs	PEO	1	PEO	2		PEO	3	PEO4		PEO5
CO1	1		1		Ì	3		3	ĺ	3
CO2	2		2			3		3	ĺ	3
CO3	3		3			3		3		3
CO4	3		3			3		3		3
CO5	3		3			3		3		3
Average	2.4		2.4			3		3		3
C	O-PO Map	ping Ma	trix for Co	ourse M'	Tech/	'CSE/F'	T/3/DSC4	(ii)		
COs	PO1 PO2	PO3	PO4	PO5 F	PO6	PO7	PO8 PO9	PO10	PO11	PO12
CO1	1 3	1	1	1	-	-		-	1	3
CO2	2 1	1	3	1	-	-		-	2	3
CO3	3 1	1	3	3	-	-		-	3	3
CO4	3 3	1	3	1	-	-		-	3	3
CO5	3 1	1	3	3	-	-	- -	-	3	3
Average	2.4 1.	8 1	2.6	1.8	-	-		_	2.4	3

	CO	-PSO Mapping 1	Matrix for Course I	MTech/CSE/FT/3/D	SC4(ii)					
CO)s	PSO1	PSO2	PSO3	PSO4	PSO5				
СО	01	3	3	1		3				
CO	02	3	3	2	-	3				
CO	13	3	3	3		3				
CO	4	3 3 - 3								
CO	15	3	3	3	-	3				
Avera	age	e 3 3 2.4 - 3								
		MTech/	Course Conten CSE/FT/3/DSC4(ii)	t): Big Data Analytics	5					
UNIT -1	Data, Big I Analysing	Data Analytics, H	listory of Hadoop, A	digital data, introdu Apache Hadoop, anal g, Hadoop Echo Syst	ysing Data with	Unix tools,				
UNIT -II UNIT -III	HDFS (Hadoop Distributed File System): The design of HDFS, HDFS concepts, command line interface, Hadoop file system interfaces, data flow, data ingest with flume and Scoop and Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures. Map Reduce: Anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task									
UNII -111			s and formats, Map I		illig, shuffle and s	OIL, LASK				
UNIT -IV	latin, user c Hive: Hive tables, quer Hbase: HB	defined functions, e shell, Hive servi rying data and use	data processing oper	, comparison with tra	-	-				
			Text/Reference B	ooks						
Text Books	2. Seema	aAcharya, Subhas dSathi, "BigData	iniChellappan, "Big	e" Third Edit on, O're Data Analytics" Wile ve Technologies for	ey 2015.					
Reference Books	2. Ja (2) 3. An Un 4. Bi	 Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Jay Liebowitz, "Big Data and Business Analytics" AuerbachPublications, CRC press (2013) AnandRajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012. 								

	MTech/CSE/FT/3/DSC4(iii)Data Science								
Course Type Course		Contact	Delivery	Maxim	ım Marks	Exam	Assessment Methods		
	Credit	Hours/Week Mode		External	Internal	Duration			
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance		

Course Objectives: The objective of this course is to get the students familiar with the concepts of data science, data analysis and associated visualization techniques.

Course Outcomes	At the end of this course, the student would have an understanding of:
CO1	define: data science process, classification of data, big data, web data, sampling, data analysis techniques-correlation, regression, mean, mode, kurtosis, Bayesian inference etc., neural network, fuzzy logic, rule of mining, hadoop, hive, cloud database, and visualization.
CO2	understand and describe: graphical representation of data, storage and retrieval of data, evolution of analytic scalability, sampling distribution, data analysis techniques, Bayesian model and network, induction rule, neural network, fuzzy logic, data mining techniques, data analysis framework and visualization.
CO3	use: data science process, modern data analytic tools, statistical concepts, data analysis techniques, Bayesian network, induction rule, fuzzy logic, data mining techniques, hadoop file system, hive, S3, cloud database, inference and visualization.
CO4	categorize: analytic processes and tools, analysis, reporting, sampling and re- sampling, data analysis techniques, linear and non-linear time series, sequential, temporal and spatial mining, egonets systems and application.
CO5	choose: data science process, data storage, data analytic tools and processes, sampling method, data analysis technique, time series, mining techniques, visual data analysis framework and technique suitable in given situation.

C	O-PE	O Mapp	oing M	atrix fo	r Cours	se MTeo	h/CS	E/FT/3	B/DSC4(i	ii)		
Cos	PEO		PEO2			PEO3		P	EO4	I	PEO5	
CO1		1		1			3	ĺ	3		3	;
CO2		2		2	3 3		3	}				
CO3		3		3			3		3		3	;
CO4		3		3			3		3		3	;
CO5		3		3			3		3		3	
Average		2.4		2.4			3		3		3	}
(СО-РС) Mapp	ing Ma	trix for	Cours	e MTec	h/CSE	2/FT/3/	/DSC4(ii	i)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	_	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3

CO5	3 1	1 3 3			3 3								
Average	2.4 1.8	1 2.6 1.8			2.4 3								
C	CO-PSO Mapping	g Matrix for Cours	e MTech/CSE/F1	T/3/DSC4(iii)									
COs	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	3	1	-	3								
CO2	3	3	2	-	3								
CO3	3	3	3	-	3								
CO4	3	3	3	-	3								
CO5	3	3	3	-	3								
Average	3 3 2.4 - 3												
	Course Content MTech/CSE/FT/3/DSC4(iii): Data Science Introduction to Data Science : data science process, exploratory data analysis, collection												
	of data, graphical big data, challeng analytic processes Statistical Concep	ata Science : data s presentation of data es of conventional and tools, analysis ots: sampling distrib	a, classification of systems, web data vs reporting, mod	data, storage an a, evolution of a ern data analytic	d retrieval of data, nalytic scalability, tools;								
	error. Data Analysis: Correlation, regression, probability, Conditional probability, random variables, analysis using mean, median, mode, standard deviation, skewness, kurtosis, regression modeling, multivariate analysis, Bayesian modeling, inference and Bayesian networks, support vector and kernel methods; Analysis of Time Series: linear systems analysis, nonlinear dynamics.												
	competitive learni Fuzzy Logic: extr methods, neuro fu Association Rule	hniques: Rule indu ng, principal compo- racting fuzzy mode zzy modelling, Mining: clustering, ning, web mining.	onent analysis and ls from data, fuzz	neural networks by decision trees	; , stochastic search								
	NoSQL databases visual data analys	rameworks and Vis , cloud databases, s is techniques, inter- ets systems and app	S3, Hadoop Distri action techniques,	buted File Syste	ms, visualizations,								
		Text/Reference	e Books										
Text Books.	2. AnandRajara	hold, David J. Han man and Jeffrey Da Iniversity Press, 20	avid Ullman, "Min										
Reference Books	 Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & Sons, 2012. Jiawei Han, MichelineKamber "Data Mining Concepts and Techniques", 2e, Elsevier. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2014. S. N. Sivanandam, S. N Deepa, "Introduction to Neural Networks Using Matlab 6.0", Tata McGraw- Hill Education, 2006. 												

MTech/CSE/FT/3/CC13: Software Lab based on MTech/CSE/FT/3/CC11 (Python Programming)													
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment						
	Credit	Hours/We ek	Mode	Externa 1	Internal	Duratio n	Methods						
Practical	02	04	Lab	50	-	3 Hours	TEE/						
			Work				Practical						
							File						

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to perform the modeling and simulation experiments with PYTHON. Concepts covered in MTech/CSE/FT/3/CC11 will be implemented.

Course Outcomes	At the end of this course, the student will be able to:													
C01		define: installations, working, structures, control statements, operators, lists ,object oriented programming concepts, python libraries.explain: conditional & control statements ,strings, OOPs ,file handling concepts,												
CO2	·	n: cond es and 1						ngs, O	OPs ,fi	le handl	ling cor	ncepts,		
CO3		ase: various python libraries such as numpy, matplotlib ,pandas . apply: python programming constructs to solve real world problems. categorize: data_typesdictionariesconditional_&_control_statements_functions												
CO4		categorize: data types, dictionaries, conditional & control statements, functions, python libraries.												
CO5	librari	compare: data types, dictionaries, conditional & control statements, functions, python libraries.												
CO6	design	design: basic and advanced applications in python.												
	CO-PEO Mapping Matrix for Course MTech/CSE/FT/3/CC13													
Cos		PEO1 PEO2 PEO3 PEO4 PEO3												
CO1		1		1				3		3		3		
CO2		2		2				3		3		3		
CO3		3		3				3		3		3		
CO4		3			3			3		3		3		
CO5		3			3			3		3		3		
CO6		3			3			3		3		3		
Average		2.5			2.5			3		3		3		
	CO-]	PO Maj	pping 1	Matrix	for Co	ourse I	MTech/	CSE/F	Г/3/СС	13				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	3	1	1	1	-	-	-	-	-	1	3		
CO2	2	1	1	3	1	-	-	-	-	-	2	3		
CO3	3	1	1	3	3	-	-	-	-	-	3	3		
CO4	3	3	1	3	1	-	-	-	-	-	3	3		
CO5	3	1	1	3	3	-	-	-	-	-	3	3		

CO6	3	3	3	3	3	-	-	-	-	-	3	3	
Average	2.5	2	1.3	2.6	2	-	-	-	-	-	2.5	3	
	CO-F	PSO Ma	pping	Matrix	for C	ourse	MTech/	CSE/F	T/3/CC	213			
Cos		PSO1		PSO	02		PSO	3		PSO4		PSO5	
CO1		3		3			1			-		3	
CO2		3		3			2			-		3	
CO3		3		3			3			-		3	
CO4		3		3			3			-		3	
CO5		3		3			3			-		3	
CO6	3		3		3				-		3		
Average	3		3		2.5				-		3		

MTech/C	MTech/CSE/FT/3/CC14: Lab based on MTech/CSE/FT/3/CC12 (implementation in MATLAB)														
Course Course Contact			Delivery	Maxim	ım Marks	Exam	Assessment								
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods								
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File								

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to inculcate a flavor of research in students by allowing them to work on a real-life research problem using MATLAB. Concepts covered in MTech/CSE/FT/3/CC12 will be implemented.

Course Outcomes	At t	At the end of this course, the student will be able to :											
CO1			0				-		lata analy ita analys			ction,	
CO2			0		• 1		-		, data ana ita analys	•		lection,	
CO3		Illustrate: measurement. data collection, processing, sampling, analysis and its strategies, reports.											
CO4	,and	strategies, reports. categorize: research, sampling methods, data collection techniques, reports ,and data processing strategies. perform: data analysis.											
CO5		-	-	0	nethods	, dat	a colle	ectior	n technic	lues, r	eports a	and data	
CO6	desi	processing strategies. create: thesis, reports. design: research tool . interpret(drive): results.											
CO-PEO Mapping Matrix for Course MTech/CSE/FT/3/CC14													
Cos	P	EO1		PEO	2		PEO3		PEO	4	P	EO5	
CO1		1		1			3		3			3	
CO2		2		2			3		3		3		
CO3		3		3			3		3		3		
CO4		3		3			3		3			3	
CO5		3		3			3		3			3	
CO6		3		3			3		3			3	
Average		2.5		2.5			3		3			3	
	СО-РС) Map	ping M	latrix	for Cou	rse M	ITech/(CSE/F	T/3/CC1	4			
Cos	P01	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	

CO1	1	3	1	1	1	-	-	3	-	3	1	3				
CO2	2	1	1	3	1	-	-	3	-	3	2	3				
CO3	3	1	1	3	3	-	-	3	-	3	3	3				
CO4	3	3	1	3	1	-	-	3	-	3	3	3				
CO5	3	1	1	3	3	-	-	3	-	3	3	3				
CO6	3	3	3	3	3	-	-	3	-	3	3	3				
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3				
C	O-PSC) Map	ping M	[atrix]	for Co	urse M	[Tech/C	SE/FT/	3/CC14	4						
Cos	PSO	D1	Р	SO2		PS	503		PSO4		PSC)5				
CO1	3			3		1			3		3					
CO2	3			3			2		3		3					
CO3	3			3			3		3		3					
CO4	3			3			3		3		3					
CO5	3			3			3		3		3					
CO6	3		3			3		3			3		3		3	
Average	3			3		2	2.5		3		3					

	MTech/CSE/FT /4/SEC1:Dissertation													
Course	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment							
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods							
Research Work	20	04	-	400	100	-	Teacher interaction/ Dissertation/ Viva voce							

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of dissertation and a viva voce exam.

Course Objectives: The objective of this course is to inculcate a flavor of research in the scholars by allowing them to work on a real life research problem.

Course Outcomes	At th	ne end	of this	course	e, the stu	ıdent v	vill be a	ble to :							
CO1		define: objectives, hypothesis, interpretation, data analysis, data collection, research design and method, interpretation, data analysis, sampling.													
CO2	desc	cribe:	objecti	ves, h	ypothe	sis, in	terpreta	tion, da	ata ana	lysis, da	ata colle	ction,			
	rese	arch c	lesign a	and n	nethod,	interp	oretatio	n, data a	analysi	is, samp	oling.				
CO3		Illustrate: measurement. data collection, processing, sampling, analysis and its strategies, reports.													
CO4	cate	categorize: research, sampling methods, data collection techniques, reports													
	,and	and data processing strategies.													
	perf	perform: data analysis. compare: sampling methods, data collection techniques, reports and data													
CO5	com	pare:	sampl	ing n	nethods	s, data	a colle	ction te	echniq	ues, rej	ports ar	nd data			
	-		g strate	-											
CO6			sis, repo												
		0	earch to												
interpret(drive): results. CO-PEO Mapping Matrix for Course MTech/CSE/FT /4/SEC1															
Cos	PI	EO1		PEO	2		PEO3		PEO ₂	1	PE	D5			
CO1		1		1			3		3		3	3			
CO2		2		2			3		3		3				
CO3		3		3			3		3						
CO4		3		3			3		3		3				
CO5	Ì	3		3		Ì	3		3		3				
CO6		3		3			3		3		3				
Average		2.5		2.5			3		3		3				
C	O-PO	Mapp	ing Ma	trix fo	or Cour	se MI	ech/C	SE/FT /	4/SEC	C1					
Cos															
	PO1	PO2	03	PO3 PO5 PO5 PO6 PO7 PO8 PO9 PO10 PO10 PO11								P012			
	Ā	đ	Ā	Ā	Ā	Ū,	Ā	đ	Ā	P(P(P(
CO1	1	3	1	1	1	-	-	3	-	3	1	3			
CO2	2	2 1 1 3 1 3 - 3 2 3													

CO3	3	1	1	3	3	-	-	3	-	3	3	3	
CO4	3	3	1	3	1	-	-	3	-	3	3	3	
CO5	3	1	1	3	3	-	-	3	-	3	3	3	
CO6	3	3	3	3	3	-	-	3	-	3	3	3	
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3	
СО	-PSO	Mapp	ing Ma	trix fo	or Cou	rse M7	Tech/C	SE/FT	/4/SEC	21			
Cos	PSO	D1	PSO2 PSO3 PSO4								PSO5		
CO1	3			3		1			3		3		
CO2	3			3		2			3		3		
CO3	3			3			3		3		3		
CO4	3			3			3		3		3		
CO5	3		3				3		3		3		
CO6	3		3		3			3		3			
Average	3			3		2	2.5		3		3		