Learning Outcomes based Curriculum Framework (LOCF)

For

Master of Computer Applications (2 Year) Postgraduate Programme

Department of Computer Science & Engineering Chaudhary Devi Lal University

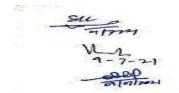
917771 VL 1 9-7-21 9-7-21 15-7-21 15-7-21

Sirsa-125055 2021

Table of Contents

- 1. About the Department
- 2. Learning Outcomes based Curriculum Framework
 - 2.1 Objectives of the programme
 - 2.2 Programme Outcomes (POs)
 - 2.3 Programme Specific Outcomes (PSOs)
 - 3. Programme Structure

Str 5 917771 9-7-21 2000 31917021


1. About the Department


There are two major streams in computer education. One of them is the Engineering stream leading to the B.E. / B. Tech. Degree and the other an Applications stream leading to the MCA degree. The primary emphasis in the MCA programme is on designing information systems for various organizations such as government departments, banks, insurance companies, hotels, hospitals, etc. Development of application software in diverse areas where computers are used will be the main function of MCA graduates. The major thrust in the MCA programme is on giving the graduates a sound background in computing, business functioning, and mathematics relevant to information technology systems. The curriculum has the courses relevant to achieving the programme outcomes. A strong laboratory component is a part of the MCA curriculum, for computer application students learn best by doing. The laboratories, besides supplementing the theory course should also expose the student to the use of the latest software tools. Every MCA student is required to spend 6-8 weeks summer training in a relevant software development house or related industry after taking their second-semester terminal examinations. Further, in their fourth semester, every MCA student shall have to work on a real-life software development project worth 8 credits. For carrying out the project work, MCA students shall be taught and trained in various software development platforms for desktop, web-based, and mobile-based applications.

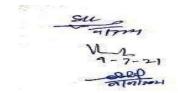
Further, every MCA student shall have to earn 116 credits in total including. Core Courses credits, discipline elective courses Credits and Open Elective Courses Credits offered by other teaching departments of the University. The students with non-computer background at graduation level are required to earn 12 credits through two Bridge Courses. Moreover, so as to enhance the life skills, the student may opt for up to two Add-On Courses. The postgraduate programme in engineering stream of computer science leading to the M. Tech. CSE degree has its primary emphasis on designing systems in computer hardware and systems software. Designing embedded systems, designing peripherals and interfacing them to a computer and use of computers in signal processing are some other areas of interest to engineering students.

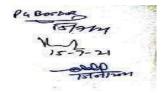
In computing science and engineering, students are provided a practical exposure to tools and technologies required in professional and academic arena. Curriculum of M. Tech. CSE programme comprises of an ample laboratory component, wherein the students get to know of current processes and technologies of this field. The M. Tech. CSE programme regular (Full Time and Part Time) is dedicated to conducting and reporting on a research problem culminating in a dissertation worth 14 credits. Further, every M. Tech. CSE Regular Full Time student shall have to earn 82 credits in total – 44 Core Courses credits, 30 Discipline Specific Elective Courses Credits and 8 Open Elective Courses Credits offered by other teaching departments of the University. Every M. Tech. CSE Regular Part Time student shall have to earn 70 credits in total – 40 Core Courses credits, 30 Discipline Specific Elective Courses Credits. This helps them blend their skills and orientation towards life in general and profession in particular. All in all, M. Tech. CSE graduates shall posses sound theoretical and research background apart from knowing modern principles and practices in computer science and engineering.

2. Learning Outcomes based Curriculum Framework

The CBCS evolved into learning outcomes based curriculum framework and provides an opportunity for the students to choose courses from the prescribed courses comprising core, elective/minor or skill-based courses. The courses can be evaluated following the grading system, which is considered to be better than the conventional marks system. Grading system provides uniformity in the evaluation and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations which enables the student to move across institutions of higher learning. The uniformity in evaluation system also enables the potential employers in assessing the performance of the candidates.

2.1 Objectives of the Programme

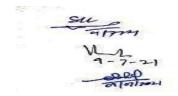

After two years of completion of their MCA programme, the graduates are expected to:

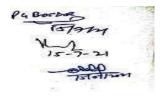

- exhibit their expertise in problem-Solving skills through design, analysis, implementation, and evaluation of IT/computer-based systems, tools, and applications - locally and globally;
- be effectively adept as individuals and as team members in multidisciplinary software development projects involving technical, managerial, economic, and social constraints;
- demonstrate patronage, leadership, and entrepreneurship skills by helping peers/juniors and by spearheading the projects teams and initiating new software projects;
- engage in lifelong learning, career enhancement and adept to changing professional and societal, and environmental needs;
- develop Technical and Communication Skills necessary to function productively to achieve a successful professional career with integrity and societal commitments.

2.2. Programme Outcomes (POs)

At the time of completion, the MCA graduates are expected to possess the following generic graduate attribute:

PO1	Computational Knowledge: Apply knowledge of computing fundamentals, computing specialization, mathematics, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements
PO2	Problem Analysis: Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.
PO3	Design /Development of Solutions: Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.




PO4	Conduct Investigations of Complex Computing Problems: Use research-based knowledge and research methods including design of experiments, analysis, and interpretation of data, and synthesis of the information to provide valid conclusions
PO5	Modern Tool Usage: Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.
PO6	Professional Ethics: Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practice.
PO7	Life-long Learning: Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.
PO8	Project management and finance: Demonstrate knowledge and understanding of the computing and management principles and apply these to one's work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO9	Communication Efficacy: Communicate effectively with the computing community, and with society at large, about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.
PO10	Societal and Environmental Concern: Understand and assess societal, environmental, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.
PO11	Individual and Team Work: Function effectively as an individual and as a member or leader in diverse teams and multidisciplinary environments.
PO12	Innovation and Entrepreneurship: Identify a timely opportunity and using innovation to pursue that opportunity to create value and wealth for the betterment of the individual and society at large.

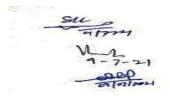
2.3 Programme Specific Outcomes (PSOs)

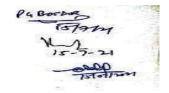
The fresh graduates of the MCA programme will have the following discipline-specific graduate attributes:

PSO1	A sound understanding of the principles of mathematics and computing and their applications in problem-solving;
PSO2	Skills to design, develop, deploy and maintain applications for desktop, web, mobile, cloud, and cross computing platforms using modern computing tools and technologies;
PSO3	Prepared to achieve their career goals in the academia/industry or

	pursue higher studies and enhance their professional knowledge;
PSO4	Acquire the expertise to adopt/apply skills gained during research, experimentation and develop a flavour for adopting trending technologies to solve computing problems;
PSO5	Practice their respective vocation/profession with ethics, integrity, leadership, and social responsibility.

3. Programme Structure


Master of Computer Applications - a four-semester postgraduate programme is 116 credits weightage consisting of Core Courses (CC), Discipline Specific Elective Courses (DSC), Skill Enhancement Courses (SEC), Open Elective Courses (OEC), Bridge Course (BC) and Add-On Course (AOC)


Table 1: MCA Credit Scheme

Semester	Core Courses (CC)		Discipline Specific Elective Courses (DSC)		Skill Enhancement Courses		Open Elective Grand Courses Total (OEC) Credits
I	No. of Courses	Total Credits 24	No. of Courses	Total Credits	No. of Courses	Total Credits	A total of 12 credits are to be earned from
II	7	24			- 1/T / 1')	-	other
III	4 4	12	3 2	12 8	1(Internship) 1(Project)	8	Departments or from MOOCs. Students have to opt open elective course in consultation with Chairperson and Director, University Centre for Outreach Programmes and Extension
Total	-	72		20	-	12	12 116
%age	-	62.06%		17.2%	-	10.34%	10.34% -

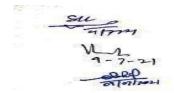
Bridge Courses				
No. of Courses	Total Credits			
02(BC1 & BC2)	12			

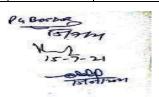
Add-On Courses (Optional)				
No. of Courses	Total Credits			
02(AOC1 &AOC2)	04			

Open Elective Courses offered for Students of other Departments

Semester	No. of Papers	Total Credits
Even and	4	16
Odd		

Note: Please mention L+P+T if practical is a part above.

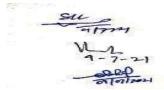

2117771 VL1 1-7-21 15-7-21 15-7-21

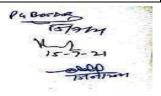

Table 2: Detailed break-up of Courses' Type (Semester wise)

Semester	Core Courses	Discipline	Skill	Open Elective Courses	Total
		Elective	Enhancement		Courses
		Specific	Courses		
		Courses			
I	CC1			• A total of 12	
	CC2			credits are to be	
	CC3			earned from	7
	CC4			other	
	CC5			Departments or	
	CC6			from MOOCs.	
	CC7			Students have to	
II	CC8			opt open elective	
	CC9			course in	
	CC10			consultation with	
	CC11			Chairperson and	7
	CC12			Director,	
	CC13			University Centre	
	CC14			for Outreach	
III	CC15	DSC1	SEC1	Programmes and	8
	CC16	DSC2		Extension	
	CC17	DSC3			
	CC18				
	CC19				
IV	CC20	DSC4	SEC2		
	CC21	DSC5			7
	CC22	DSC6			

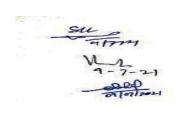
Table 3: Courses' codes, titles, and credits

Course Code	Course Title		Credit	
	Semester I	Theory	Practical	Total
MCA/Gen/1/CC1	Computer Architecture and Parallel	4	0	4
	Processing			
MCA/Gen /1/CC2	Computer Networks	4	0	4
MCA/Gen /1/CC3	Software Engineering	4	0	4
MCA/Gen /1/CC4	Operating Systems	4	0	4
MCA/Gen /1/CC5	Java and C#	4	0	4
MCA/Gen /1/CC6	Software Lab- Java	0	2	2
MCA/Gen /1/CC7	Software Lab- C#	0	2	2
	Semester II			
MCA/Gen /2/CC8	Data Structures	4	0	4
MCA/Gen /2/CC9	Computer Graphics	4	0	4
MCA/Gen /2/CC10	Database Systems	4	0	4
MCA/Gen /2/CC11	Artificial Intelligence	4	0	4



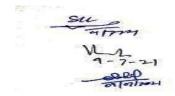


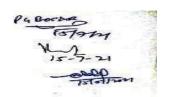
MCA/Gen /2/CC12	Web Development using Servlet, JSP	4	0	4
	and ASP[dot]NET			
MCA/Gen /2/CC13	Software Lab- Web Development using	0	2	2
	Servlet, JSP			
MCA/Gen /2/CC14	Software Lab - Web Development using	0	2	2
	ASP[dot]NET			
	Semester III			
MCA/Gen /3/CC15	Web Development	4	0	4
MCA/Gen /3/CC16	IoT and Cloud Computing	4	0	4
MCA/Gen /3/DSC1	(a) Linux and Shell Script	4	0	4
	(b) Android Software Development			
MCA/Gen /3/DSC2	(a) Network Security	4	0	4
	(b) Wireless Networks			
MCA/Gen /3/DSC3	(a) Discrete Mathematics	4	0	4
	(b) Theory of Computations			
	(c) Compiler Construction			
MCA/Gen /3/CC17	Software Lab - Web Development	0	2	2
MCA/Gen /3/CC18	Software Lab - Linux/Android	0	2	2
MCA/Gen /3/SEC1	Presentation/Viva on Internship	4	0	4
	Semester IV			
MCA/Gen /4/CC19	Python Programming	4	0	4
MCA/Gen /4/CC20	R Programming	4	0	4
MCA/Gen /4/DSC4	(a) Soft Computing	4	0	4
	(b) Machine Learning			
	(c) Genetic Algorithms			
MCA/Gen /4/DSC5	(a) Data Warehousing and Data Mining	4	0	4
	(b) Big Data Analytics			
	(c) Data Science			
MCA/Gen /4/SEC2	Project Work	8	0	8
MCA/Gen /4/CC21	Software Lab –Python Lab	0	2	2
MCA/Gen /4/CC22	Software Lab –R Prog. Lab	0	2	2


Table 4: MCA Courses' List

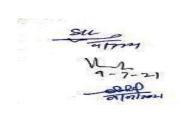
Course Code	Course Title	Credits
	Core Courses	·
MCA/Gen /1/CC1	Computer Architecture and Parallel Processing	4
MCA/Gen /1/CC2	Computer Networks	4
MCA/Gen /1/CC3	Software Engineering	4
MCA/Gen /1/CC4	Operating Systems	4
MCA/Gen /1/CC5	Java and C#	4
MCA/Gen /1/CC6	Software Lab – Java	2
MCA/Gen /1/CC7	Software Lab – C#	2
MCA/Gen /2/CC8	Data Structures	4
MCA/Gen /2/CC9	Computer Graphics	4

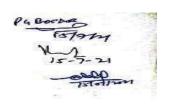
MCA/Gen /2/CC10	Database Systems	4					
MCA/Gen /2/CC11	Artificial Intelligence	4					
MCA/Gen /2/CC12	Web Development using Servlet, JSP and ASP[dot]NET	4					
MCA/Gen /2/CC13	Software Lab- Web Development using Servlet, JSP	2					
MCA/Gen /2/CC14	Software Lab – Web Development using ASP[dot]NET	2					
MCA/Gen /3/CC15	Web Development Web Development	4					
MCA/Gen /3/CC16	IoT and Cloud Computing	4					
MCA/Gen /3/CC17	Software Lab - Web Development	2					
MCA/Gen /3/CC18	Software Lab - Linux/Android	2					
MCA/Gen /4/CC19	Python Programming	4					
MCA/Gen /4/CC20	R Programming	4					
MCA/Gen /4/CC21	Software Lab – Python Lab	2					
MCA/Gen /4/CC22	Software Lab –R Programming Lab	2					
	Discipline Specific Elective Courses						
MCA/Gen /3/DSC1		4					
MCA/Gell/5/DSC1	(a) Linux and Shell Script(b) Android Software Development	4					
MCA/Gen /3/DSC2	(a) Network Security	4					
Wich Gon / 5/ BBC2	(b) Wireless Networks						
MCA/Gen /3/DSC3	(a) Discrete Mathematics	4					
	(b) Theory of Computations						
	(c) Compiler Construction						
MCA/Gen /4/DSC4	(a) Soft Computing	4					
	(b) Machine Learning						
1.504.10	(c) Genetic Algorithms						
MCA/Gen /4/DSC5	(a) Data Warehousing and Data Mining	4					
	(b) Big Data Analytics (c) Data Science						
	Skill Enhancement Courses						
MCA/Gen /3/SEC1	Presentation/Viva on Internship	4					
MCA/Gen /4/SEC2	Project Work	8					
	Bridge Courses						
MCA/Gen /1/BC1	MCA Bridge Course 1	6					
MCA/Gen /2/BC2	MCA Bridge Course 2	6					
	Add-On Courses	•					
MCA/Gen /3/AOC1	Green Computing	2					
MCA/Gen /4/AOC2	Cyber Laws and Ethics in Computing	2					
Open Elective Courses offered for Students of other Departments Odd & Even Semester							
CSE/9/OEC1	Fundamentals of Information Technology	4					
CSE/9/OEC2	Windows and Office Automation Tools	4					
CSE/9/OEC3	Introduction to Cyber Space	4					
CSE/9/OEC4	Information Technology for Lifelong Learning	4					



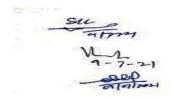


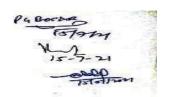
	MCA/GEN/1/CC1: Computer Architecture and Parallel Processing											
Course Type	Course						Exam	Assessment				
	Credit	Hours/ Week	Mode	External	Interna	ıl	Duration	Methods				
Core Theory	04	04	Lecture	70	30 20 5	5	3 Hours	TEE/MTE/ Assignment/ Attendance				


Course Objectives: To study the fundamental concepts of computer architecture, various computational models, evolution of instruction level processors, classification of parallel architectures and MIMD architectures.

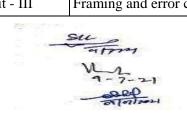

	1			•								1
Course	At th	ne end	l of th	is cour	se, th	e stud	ent wi	II be	able to):		
Outcomes												
CO1				-		-					-	computer
		architecture, computational model, instruction level processors, code scheduling for ILP processors, distributed and shared MIMD										
			-	r ILF	pr c	ocesso	ors, c	listrib	uted	and	shared	MIMD
		itectu										
CO2												, parallel
							uction	leve	proc	essors,	distrib	uted and
G 0.2				archited								•
CO3							com	putati	onal	model	s, arcl	nitecture,
004				memo					1			1
CO4		-	_		al mo	dels,	comp	uter a	rchite	ctures,	process	sors, and
005		nory n			(1		C)		1			1 11
CO5											utationa	1 model,
1				d memo								
	CO-	PEO I	Mapp	ing Ma	trix fo	or Cou	ırse M	.CA/G	EN/1/	CC1		
COs	P	EO1		PEO	2	PEO3			PEC	D4	P	EO5
CO1		1		3		1			3		3	
CO2		2		3			1		3		3	
CO3		3		3			1		3			3
CO4		3		3			1		3		!	3
CO5		3		3			1		3			3
Average		2.4 3 1 3 3								3		
	CO	CO-PO Mapping Matrix for Course MCA/GEN/1/CC1										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	-	-	-	-	-

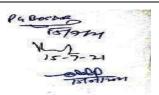
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1 3 3				3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	_	3	-	-	-	-	-
	CO-	 PSO I	 Manni	 ing Ma	 trix f	 or Cou	rse M	 CA/G	 GEN/1/(CC1		
COs	PS			PSO2			PSO3		PSO		F	PSO5
CO1		3	Í	1			3		1		-	_
CO2		3		1			3		2			_
CO3		3]	1			3		3			_
CO4		3		1			3		3			_
CO5		3		1			3		3			-
Average	3	3		1		3		2	2.4			-
				omput	ter Ar		ture an		rallel P			
Unit – I	evolu levels	ition a s of a	nd int ibstrac	erpreta	tion o ntrodu	f the o	concept to para	t of c allel	ompute	er arch	itecture	nal model, at different d levels of
Unit – II	instru	ections	s, instr	ruction	sched	uling,	concep	ts of	pipelin	e proc		es between ntroduction sors.
Unit – III	Distributed Memory MIMD Architectures: introduction, direct interconnection networks, interconnection topologies, switching techniques-packet and circuit switching, routing- deterministic and adaptive routing.											
Unit – IV	path, probl	switc em, I ctory	hing Hardw	networ are ba	ks-cro sed c	ssbar ache	and m	ultist	age ne protoco	tworks l-snoop	, Cache by cach	orks-shared coherence e protocol, tware-based
	ı			Text/	Refer	ence E	Books					
Text Books	1. D. Sima, Advanced Computer Architectures, Pearson Education											
Reference Books			-	Advar lity, Ta		_		chite	cture -	- Paral	lelism,	Scalability,

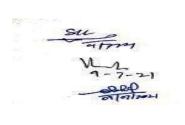


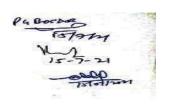


MCA/GEN/1/CC2: Computer Networks											
Course Type	Course	Contact					Assessment				
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods				
Core Compulsory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/				
Theory					20 5 5		Attendance				

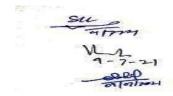

Course Objectives: The objective of this course is to make the students familiar with the topics of networking, data communication, modes of transmission, communication media, routing, error control and congestion control.

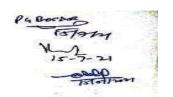

Course	At the end of	f this course, th	e student will be	e able to:						
Outcomes										
CO1			•		n and computer					
					ference models,					
				ansmission mo	odes and media,					
G 0.2		d multiplexing.								
CO2					nmunication and					
	-	-	_		eference models,					
	*				sion modes and					
			ng and multiple	_						
CO3					tion of computer					
				decide wh	1 0					
	communicati		media,	and	network					
			l/technology wi							
CO4		• •	-		communication					
			_	-	ng mechanisms,					
					mission modes,					
G0.5			tion control tech		1 . 1 .					
CO5					work topologies,					
	transmission media, switching and multiplexing techniques, protocols and									
	different layers, error control mechanisms, congestion control techniques.									
	CO-PEO Mapping Matrix for Course MCA/GEN/1/CC2									
COs	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	3	1	3	3					
CO.2	2	3	1	3	3					




CO3		3 1 3 3										3
CO4		3		3		1			3			3
CO5		3		3		1			3			3
Average		2.4		3			1		3			3
	CO	-PO N	lappi	ng Mat	trix fo	r Cou	rse MO	CA/GI	EN/1/C	CC2	I .	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO.2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-
	CO-	PSO I	Mappi	ing Ma	trix fo	or Cou	ırse M	CA/G	EN/1/	CC2		
COs	PS	O1		PSO2		F	PSO3		PSC	D4	P	SO5
CO1	3	3		2			3		1			-
CO.2	3	3		2			3		2			-
CO3	3	3		2			3		3			-
CO4	3	3		2			3		3			-
CO5	3	3		2			3		3			-
Average	3	3		2			3		2	2.4		-
		M	CA/G	Co EN/1/0		Conte Comp		etwor	ks			
Unit - I	Network concepts: goals and applications of computer networks; topologies; categories of networks - LAN, MAN, WAN; point-to point, and broadcast networks. Networks architecture: concepts of protocols & services; OSI model and functions of its layers; TCP/IP reference model. TCP/IP: elements of transport protocols; transmission control protocol (TCP); user datagram protocol (UDP); internet protocol (IP).											
Unit - II	Data communication concepts: components of a data communication system; transmission modes; transmission media – guided and wireless media; introduction to switching (circuit, message and packet) and multiplexing (frequency division and time division); modem. Introduction to SMDS, X.25, ISDN networks, frame relay and ATM networks.											
Unit - III	Fram	ing an	d erro	r contro	ol: frar	ning te	echniqu	ies; eri	or con	itrol - e	rror dete	ection &

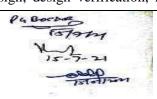
	correction. Data link control: acknowledgments, sliding window protocols. Multiple Access Control, flow and error control, token bus, token ring, DQDB.
Unit - IV	Routing: deterministic and adaptive routing; centralized and distributed routing; shortest-path; flooding; flow-based; optimal; distance-vector, link-state, hierarchical; routing for mobile hosts; broadcast and multicast routing. Congestion control: principles of congestion control; traffic shaping; choke packets; load shading; RSVP.
	Text/Reference Books
Text Books	 Andrews, Tananbaum, Computer Networks – PHI. Fred Halsall, Data Communications, Computer Networks and Open Systems, 4e, Addison Wesley. William Stalling, Data and Computer Communications, 5e, PHI.
Reference Books	2. Behrouz, Frozen, Introduction to Data Communications and Networking, Tata McGraw Hill.



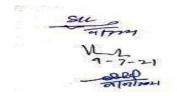


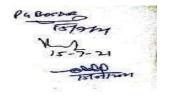
	MCA/GEN/1/CC3: Software Engineering											
Course Type	Course	Contact					Assessment					
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Core Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
					20 5 5		Attendance					

Course Objectives: The objective of this course is to make the students familiar with the topics of software crisis, software engineering paradigms, software configuration management, design, coding, testing and maintenance.


techniques, relationship between reliability and quality. CO3 illustrate various techniques of: requirement analysis, design, coding, testing and maintenance, quality and reliability. CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.		
CO1 enumerate/define the concepts of: software and software engineering, software development paradigms, phases of software development, methods of assessing quality and reliability. CO2 describe and summarize: phases of software development process, testing techniques, relationship between reliability and quality. CO3 illustrate various techniques of: requirement analysis, design, coding, testing and maintenance, quality and reliability. CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.	Course	At the end of this course, the student will be able to:
software development paradigms, phases of software development, methods of assessing quality and reliability. CO2 describe and summarize: phases of software development process, testing techniques, relationship between reliability and quality. CO3 illustrate various techniques of: requirement analysis, design, coding, testing and maintenance, quality and reliability. CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.	Outcomes	
methods of assessing quality and reliability. CO2 describe and summarize: phases of software development process, testing techniques, relationship between reliability and quality. CO3 illustrate various techniques of: requirement analysis, design, coding, testing and maintenance, quality and reliability. CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.	CO1	enumerate/define the concepts of: software and software engineering,
CO2 describe and summarize: phases of software development process, testing techniques, relationship between reliability and quality. CO3 illustrate various techniques of: requirement analysis, design, coding, testing and maintenance, quality and reliability. CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.		software development paradigms, phases of software development,
techniques, relationship between reliability and quality. CO3 illustrate various techniques of: requirement analysis, design, coding, testing and maintenance, quality and reliability. CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.		methods of assessing quality and reliability.
CO3 illustrate various techniques of: requirement analysis, design, coding, testing and maintenance, quality and reliability. CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.	CO2	describe and summarize: phases of software development process, testing
testing and maintenance, quality and reliability. CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.		techniques, relationship between reliability and quality.
CO4 analyse and classify: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.	CO3	illustrate various techniques of: requirement analysis, design, coding,
models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.		testing and maintenance, quality and reliability.
reliability and quality models. CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.	CO4	analyse and classify: software engineering paradigms, cost estimation
CO5 compare and select from amongst candidate: software engineering paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.		models, design methodologies, testing techniques, maintenance process,
paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.		reliability and quality models.
paradigms, cost estimation models, design methodologies, testing techniques, maintenance process, reliability and quality models. CO6 design and develop simple software using the concepts, techniques and principles of software engineering.	CO5	compare and select from amongst candidate: software engineering
design and develop simple software using the concepts, techniques and principles of software engineering.		paradigms, cost estimation models, design methodologies, testing
principles of software engineering.		techniques, maintenance process, reliability and quality models.
	CO6	design and develop simple software using the concepts, techniques and
CO-PEO Manning Matrix for Course MCA/GEN/1/CC3		principles of software engineering.
CO 120 Mapping Matrix for Course Mery GER (1/CC)		CO-PEO Mapping Matrix for Course MCA/GEN/1/CC3

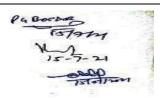
COs	PEO1 PEO2 PEO3 PEO4 PEO5											
CO1		1		3			3		3			3
CO2		2		3		3			3			3
CO3		3		3		 	3		3			3
CO4		3		3			3		3			3
CO5		3		3			3		3			3
Average		2.4		3		 	3		3			3
Tivelage			nning		ix for	Cours		\/GF	EN/1/C(
COs	PO1	PO2	PO3		PO5		PO7	PO		PO10	PO11	PO12
	101	102	103	101	103	100	107	10	3 10)	1010	1011	1012
CO1	1	3	1	1	1	-	3	2	1	-	2	-
CO2	2	1	1	3	1	-	3	2	1	-	2	-
CO3	3	1	1	3	3	-	3	2	1	-	2	-
CO4	2	1	1	3	1	-	3	2	1	-	2	-
CO5	2	1	3	1	3	-	3	2	1	-	2	-
Average	2	1.4	1.4	2.2	1.8	-	3	2	1	-	2	-
	CO-P	SO M	appin	g Matı	rix for	Cour	se MC	A/G	EN/1/C	C3	I	
COs	PS	O1		PSO2		F	SO3		PSO	D4	PS	O5
CO1	3	3		3			3		1			-
CO2	3	3		3			3		2			-
CO3	3	3		3			3		3			-
CO4	3	3		3			3		3			-
CO5	3	3		3			3		3			-
Average	3	3		3			3		2.	.4		-
Course Content MCA/GEN/1/CC3: Software Engineering												
Unit - I	Software and software engineering, software characteristics, software crisis, software engineering paradigms, planning a software project, software cost estimation, project scheduling, personnel planning, team structure.											
Unit - II	- II Software requirement analysis: structured analysis, object-oriented analysis and data modeling, software requirement specification, validation. Software configuration management, quality assurance, project monitoring, risk management.											
Unit - III	7											

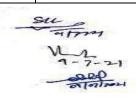


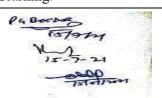


	and control, coding. Software Reliability: metric and specification, fault avoidance and tolerance, exception handling, defensive programming.
Unit - IV	Testing: testing fundamentals, white box and black box testing, software testing strategies: unit testing, integration testing, validation testing, system testing, debugging. Software maintenance: maintenance characteristics, maintainability, maintenance tasks, maintenance side effects. CASE tools. agile development.
	Text/Reference Books
Text Books	 Mall, Rajib, Fundamentals of Software Engineering, PHI Learning Pvt. Ltd Aggarwal, K.K., and Singh, Yogesh, Software Engineering, New Age International Jalote, Pankaj, An Integrated Approach to Software Engineering, Narosa Publishing House.
Reference Books	3. Pressman, S. Roger, Software Engineering, Tata McGraw-Hill.

	MCA/GEN/1/CC4: Operating Systems									
Course Type Course		Contact	Delivery	Maximu	ım Ma	arks		Exam	Assessment	
	Credit	Hours/ Week	Mode	External	External Internal			Duration	Methods	
Core Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/	
					20	5	5		Attendance	


Course Objectives: The objective of this course is to get the students familiar with fundamental concepts of operating systems, namely, types of operating systems, functions of memory management module, process management module, deadlock management and file protection, etc.

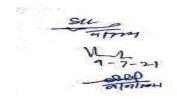

Course	At tl	he end	l of th	is cou	rse, th	e stud	lent wi	11 be	able to):		
Outcomes			. 51 111	.	, 111			50		-		
CO1	inter	outline and define: the goals, functions and types of operating system, interprocess communication, deadlock; identify the techniques of allocation of memory, processor, and disk space.										
CO2	inter	rproce	ess c		nicatio	on, c	deadlo	ck 1	manage			g system, iques of
CO3	men	nory	mana		t, virt	ual n	nemory					heduling, sk space
CO4	sche	dulin	galg	orithm	s, dis	k scl	nedulir	ng a	_	ms, pa	age rep	, process lacement
CO5	dete syste disk alloc	rmine em, d sche cation	and eadlo edulin met	argue ck ma g algo	the s nagen orithm direct	uitabi nent a n, pag ory	ility of approac ge rep structu	f a p ch, p lace re,	particul process ment	ar typ sched algoritl	es of: ouling a hm, dis	operating lgorithm, sk space ent, disk
	CO-P	EO M	appin	ıg Matı	rix for	Cour	se MC	A/G	EN/1/C	C4		
COs	P	EO1		PEO	2]	PEO3		PEC)4	PE	O5
CO1		1 3 1 3 3										
CO2		2 3 1 3 3										
CO3		3		3			1		3		3	3
CO4		3		3			1		3		3	3
CO5		3		3			1		3		3	3
Average		2.4		3			1		3		3	3
	CO-I	PO Ma	apping	g Matr	ix for	Cours	se MCA	\/GF	EN/1/CO	C 4		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
		1	3	1 3 - 3 3 - 2						2	-	-
CO5	2	1		2.2 1.8 - 3 2.4 - 2 - -								
CO5 Average	2 2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-
	2	1.4				- Cour			- EN/1/C		-	-

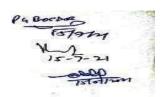


CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-

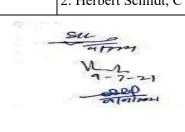
	Course Content MCA/GEN/1/CC/4: Operating Systems
Unit - I	Introductory concepts: Operating system goals and functions, types of operating systems – batch operating system, multitasking operating system, time-sharing operating systems, real-time operating systems, distributed operating systems, system calls and their types, layered architecture of operating system; modules of kernel of operating system their functions.
Unit - II	Memory management: Functions of memory management module, memory allocation methods – contiguous and non-contiguous memory allocation; real and virtual memory allocation; fragmentation – internal and external, paging, segmentation, virtual memory concepts, demand paging, page replacement algorithms, thrashing, Belady's anomaly.
Unit - III	Process management: Process concept, PCB, Process switch and mode switch; system state and state space, state transition diagram; scheduling criteria, preemptive and non-preemptive scheduling, starvation and its mitigation, process scheduling algorithms, levels of scheduling, comparison of scheduling algorithms, inter-process communication, critical code section, mutual exclusion and its implementation, semaphore, hardware support for mutual exclusion.
Unit - IV	Deadlock - concept, conditions; deadlock management - prevention, avoidance, deadlock detection and recovery, practical considerations - ostrich approach; file - concept, file protection, file access control, file access methods; directory structure; disk space allocation; disk scheduling algorithms and their performance comparison.
	Text/Reference Books
Text Books	 Silberschatz A., Galvin P. B., Gagne G., Operating System Concepts, Wiley India Pvt. Ltd. ChauhanNaresh, Principles of Operating Systems, Oxford University Press. Tanenbaum A.S., Operating System- Design and Implementation, PHI Learning.
Reference Books	 Deitel H.M., Operating Systems, Pearson Education. Stallings William, Operating System, PHI Learning.

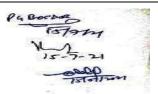
3. Godbole A.S., Operating Systems, Tata McGraw-Hill, New Delhi


MCA/GEN/1/CC5: Java and C#

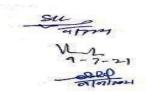

9-7-21 9-7-21

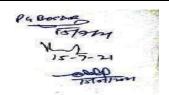
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/
					20 5 5		Attendance


Course Objectives: The objective of this course is to get the basic concepts and building blocks of Core Java and C#.Net programming languages using the modular approach which emphasizes on small programs. Learn how to write moderately complex programs efficiently. Learn making GUI-based applications in Core Java as well as C#.Net.

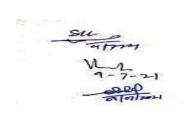

Course Outcomes	By the end	By the end of this course, the student will able to:									
CO1	loops, arra	outline: programming environment, data types, control constructs, loops, arrays, programming approaches, threads in programming, file system for data storing, data structure library, graphical user interface concepts									
CO2	multithrea	e: programming ded programmin ibrary, GUI conce	g, data storii		* *						
CO3	operation	sic programming s, data structure of dly interfaced prog	perations, con								
CO4	constructs	categorize: data types, programming approaches, flow controls constructs, loops, single and multithreaded programming, various classes in collection framework, GUI controls.									
CO5	methods,	choose: data types, programming approaches, branching and iteration methods, serial or concurrent programming, data structures supporting classes in collection framework.									
CO6	create: pro	ograms using basi	c concepts, m	ultithreading ar	nd GUI based						
(CO-PEO Map	ping Matrix for C	ourse MCA/G	EN/1/CC5							
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	3	3	3	3						
CO2	2	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
CO6	3	3	3	3	3						
Average	2.5	2.5 3 3 3 3									
	CO-PO Mapı	oing Matrix for Co	urse MCA/GE	CN/1/CC5							

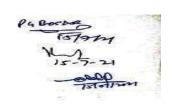
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	_	3	1	_	-	_	_
CO2	2	1	1	3	1	_	3	2	_	_	_	_
CO3	3	1	1	3	3	-	3	3	-	-	_	_
CO4	3	3	1	3	1	-	3	3	-	-	_	_
CO5	3	1	3	1	3	-	3	3	_	_	_	_
CO6	3	3	3	3	3	-	3	3	-	-	-	_
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-l	PSO M	apping	g Matr	ix for	Cours	e MC	A/GEN	I/1/CC	5		
COs	PS	SO1		PSO	2		PSO3		PSC	04	PS	O5
CO1		3		1			1		1			-
CO2		3		2			2		2			-
CO3		3		3			3		3			_
CO4		3		3			3		3			_
CO5		3		3			3		3		,	-
CO6		3		3			3		3			_
Average		3		2.5			2.5		2.5	5		-
Course Content MCA/GEN/1/CC5: Java and C#												
Unit - I		e types	, opera	itors ar	nd its t	ypes, d	lecisio	n contr	ols, co	-	-	a types, s, loops,
Unit - II		ors, Po	lymorp	ohism:	functi	on ove	erloadii	ng and	opera	tor ove		tructors, g in C#,
Unit - III		s, creati	ing sin	gle an	d mult	iple th	readed		_		_	sses and g, thread
Unit – IV	Workin Collecti framew I/O stre	on fra ork, list	mewor , set, n	k in nap.	Java a	and C	#: inte	erfaces	and	classes		ollection
			7	Γext/R	eferen	ce Boo	ks					
Text Books	 Darrel Ince& Adam Freeman, Programming the Internet with Java, 2e, Addison Wesley. K.A. Mughal, R.W. Rasmussen, A Programmer's Guide to Java Certification, Addison Wesley. E. Balagurusamy, Programming with Java, 6e, Tata McGraw Hill. E. Balagurusamy, Programming in C# - A Primer, 4e, Tata McGraw Hill. 											
Reference Books	1. Herb				_						Hill.	



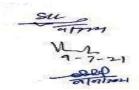

	MCA/GEN/1/CC6: Software Lab –Java											
Course Type	Course Contact		Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					

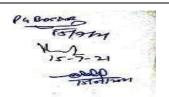
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on the practical file, performance in practical exam and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands-on practice with Core Java programming concepts covered in course MCA/GEN/1/CC5.

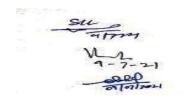

programming concept	S covered in co	uise WICA/GEN/I/C								
Course	By the end of this course, the student will able to:									
Outcomes CO1	outline: programming environment, data types, control constructs, loops,									
001	arrays, programming approaches, threads in programming, file system for data storing, data structure library, graphical user interface concepts.									
CO2		programming fur								
		ed programming,								
		rary, GUI concepts			,					
CO3	apply: basi	c programming of	concepts: to							
	-	data structure ope y interfaced progra		rrent execution	of threads,					
CO4		data types, progra								
		loops, single and multithreaded programming, various classes in								
CO5	collection framework, GUI controls.									
CO5		choose: data types, programming approaches, branching and iteration methods, serial or concurrent programming, data structures supporting								
		ollection framework		data structure	supporting					
CO6	develop: pro	ograms using basic	concepts, mult	ithreading and	GUI based					
	concepts.									
	CO-PEO Map	pping Matrix for Co	ourse MCA/GEI	N/1/CC6						
COs	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	3	3	3	3					
CO2	2	3	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
CO6	3	3	3	3	3					
Average	2.5	3	3	3	3					

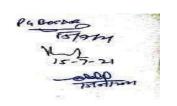
	CO-PO Mapping Matrix for Course MCA/GEN/1/CC6											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	1	3	1	1	1	-	3	1	-	-	-	_
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-PS	O Ma	pping	Matri	x for (Course	MCA	/GEN/	1/CC6)		
COs	PS	O1		PSO2]]	PSO3		PS	O4	PS	O5
CO1		3		1			1		1	l	_	
CO2		3		2			2		2	2	-	,
CO3		3		3			3		3	3	_	
CO4	:	3		3			3		3	3	-	
CO5		3		3			3		3		-	
CO6		3		3		3			3		_	
Average		3		2.5			2.5		2.	.5	_	



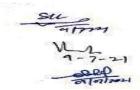

	MCA/GEN/1/CC7: Software Lab – C#									
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment			
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods			
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File			

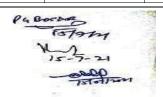
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the basis of practical file, performance in practical exam and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands-on practice with C# programming concepts covered in course MCA/GEN/1/CC5.

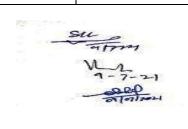

F8										
Course	At the end of	of this course, the	student will be a	able to:						
Outcomes										
CO1	loops, array	outline: programming environment, data types, control constructs, loops, arrays, programming approaches, threads in programming, file system for data storing, data structure library, graphical user interface concepts.								
CO2	approaches,	summarize: data types, programming concepts, programming approaches, multithreaded programming, data storing using file system, data structure library, GUI concepts.								
CO3	operations,	c programming data structure op y interfaced progr	perations, concu							
CO4	and multit	categorize: programming approaches, controls constructs, loops, single and multithreaded programming, various classes in collection framework, GUI controls.								
CO5	_	ogramming appronurant programmamework.		-						
CO6	develop: pro	ograms using basi	c concepts, mult	tithreading and	GUI based					
Average										
	CO-PEO Map	pping Matrix for C	ourse MCA/GE	N/1/CC7						
Cos	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	3	3	3	3					
CO2	2	3	3	3	3					
CO3	3	3	3	3	3					

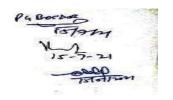
CO4		3		3			3			3		3
CO5		3		3			3		3			3
CO6		3		3			3			3		3
Average		2.5		3			3			3		3
	CO-I	PO Ma	pping	Matr	ix for (Course	e MCA	/GEN	/1/CC	7	ı	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	_	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-P	SO M	appin	g Matı	rix for	Cours	se MC	A/GEN	V/1/CC	7		!
COs	P	SO1		PSO	2		PSO3		PS	SO4	P	SO5
CO1		3		1			1			1		-
CO2		3		2			2			2		-
CO3		3		3			3			3		-
CO4		3		3	3 3		-					
CO5		3		3			3		3			-
CO6		3		3			3		3		-	
Average		3		2.5			2.5		2.5		-	

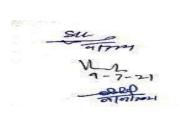


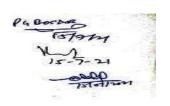


	MCA/GEN/2/CC8: Data Structures											
Course Type	Course	Contact	Delivery	Maximum Marks			S	Exam Duration	Assessment			
	Credit	Hours/Week	Mode	External	Internal			External Internal		Internal		Methods
Compulsory Theory	04	04	Lecture	70	30			3 Hours	TEE/MTE/ Assignment/At			
					20 5 5			tendance				

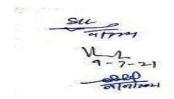

Course Objectives: The objective of this course is to get the students familiar with various types of data structure and different techniques to implement the data structures and their real-life applications.

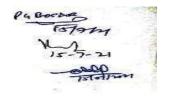

Course Outcomes	At the end o	f this course, the st	udent will be	able to:						
CO1	define: abst	ract data types, al	gorithms, con	aplexity of algo	orithms, linear					
	data structur	es, non-linear data	structures, sea	arching, sorting,	, hashing.					
CO2	give: origina	give: original examples of : data structures and its types; explain: sorting								
	techniques,	searching meth	ods, hashing	g and collisi	on resolution					
	techniques.	<u> </u>								
CO3	calculate: (c	omplexity of algo-	rithm). use arr	ray , sta <mark>ck, que</mark>	ue, linked list,					
	tree, graph,	linear search, b	inary search,	bubble sort,	selection sort,					
	insertion sor	t, radix sort, shell	sort, merge so	ort, quick sort, h	neap sort , hash					
	function to s	olve given problen	ns.							
CO4	differentiate	: data structure, se	arching techni	ques, sorting te	chniques, hash					
	functions; an	nalyze: time and sp	ace complexit	y.						
CO5	evaluate: tl	ne complexity of	linear searcl	n, binary searcl	h, bubble sort,					
	selection so	rt, insertion sort, i	radix sort, she	ll sort, merge s	ort, quick sort,					
	heap sort, h	ash function and se	elect the best o	ne for given pro	oblem.					
	CO-PEO Ma	pping Matrix for C	ourse MCA/Gl	EN/2/CC8						
Cos	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	3	1	3	3					



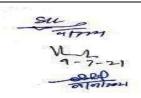

CO2		2 3 1 3									3	2
CO3		3		3			1		3		3	
CO4		3										
				3			1		3		3	
CO5	,	3		3			1		3		3	
Average		2.4		3			1	CENIA	3		3	9
 Cos	_ CO-I	PO Ma 	pping	Matrix 	tor (ourse 	MCA/	GEN/2/ 	 		I	
Cos	PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	PO9	PO10	P011	PO12
CO1	1	3	1	1	1	-	3	-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1	3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	-	-	-
	CO-P	SO Ma	apping	Matri	x for	Course	e MCA	/GEN/2	/CC8			
Cos	PS	O1	I	PSO2		P	SO3		PSO4	1	PS	O5
CO1	í	3		3		3			1		-	-
CO2	-	3		3		3		ĺ	2	ĺ	-	-
CO3		3		3			3		3			-
CO4		3		3			3		3			-
CO5		3		3			3		3			-
Average	-	3		3			3		2.4		-	-
		M	[CA/G]		rse Co CC8:		tructu	res				
a	lgorith	ms, tir	ne-spac	ce trad	e off,	mathe	ematical		on and	functi	ons, as	alysis of ymptotic
S	Linear data structures: abstract data types, array-based implementation, Stack: operations and application of stacks. Queues: operation on queues, circular queue, priority queues and de-queue, linked list: implementation of linked list, header linked list for polynomial manipulation.											
Unit – III Non-linear data structures: Trees: binary tree, tree traversals, binary search tree, threaded binary tree, AVL tree, B-tree, B+ tree, heap and its applications, Huffman coding. Graph: representation of graphs, types of graph, graph traversals, topological sort, minimum spanning trees, Kruskal and Prim's algorithm, application of graphs.												
Unit – IV	Searchi	ng, sort	ing and	d hashi	ng tec	hnique	s:					

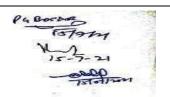
	Searching: linear search, binary search. Sorting: bubble sort, selection sort, insertion sort, radix sort, shell sort, merge sort, quick sort, heap sort, Hashing: hash functions, open addressing, chaining, rehashing.
	Text/Reference Books
Text Books	 Seymour Lipschutz, Data Structures, McGraw-Hill Book Company, Schaum's Outline series, New York (1986). Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education, 2002.
Reference Books	 Tanenbaum A.M., Langsam Y, Augenstien M.J., Data Structures using C & C++, Prentice Hall of India, 2002. SartajSahni, Data structures, Algorithms and Applications in C++, University Press (India) Pvt.Ltd, 2e, Universities Press Orient Longman Pvt. Ltd.

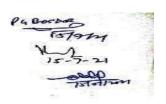




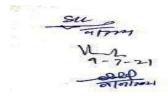
	MCA/GEN/2/CC9:Computer Graphics											
Course Type	Course	Contact	Delivery Maximum Marks		Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					

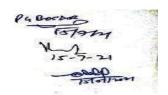

Course Objectives: Objective of this course is to make the students familiar with the basic concepts of Computer Graphics and the working of various graphic devices and their applications.


Course At the end of this course, the student will be able to:												
Course	At th	ne end o	of this of	course,	the s	tudent w	vill be	able	to:			
Outcomes												
CO1	com _j mult	define: computer graphics, soft copy computer devices, hard copy computer devices use in computer graphics, 2D graphics, 3D graphics, multimedia, 2D transformation, 3D transformation, resolution, graphic operation.										
CO2	coor DDA posit line proje	describe: computer graphic application, random scan, raster scan, coordinate system, homogeneous coordinate system, scan conversion, DDA, Bresenham line drawing algorithm, 2D and 3D transformation, positioning, pointing, rubber band techniques, clipping operation on line, polygon clipping, hidden surface removal, parallel and perspective projection, shading.										
CO3	proje	ection.				ring, cl						
CO4		categorize: scan conversion methods, projection techniques, clipping algorithms, shading methods.										
CO5	_	_				onversionethods.	on me	thods	, proj	ection	techni	ques,
	CO-P	EO Ma	pping l	Matrix	for C	ourse M	CA/G	EN/2/	CC9			
Cos	P	EO1		PEO2		PEC	03	P	EO4		PEO	5
CO1		1		3		1			3		3	
CO2		2		3		1			3		3	
CO3		3		3		1			3		3	
CO4		3		3		1			3		3	
CO5		3		3		1			3		3	
Average		2.4		3		1			3		3	
	CO-l	PO Map	ping N	Aatrix f	or Co	ourse Mo	CA/GI	EN/2/0	C C9			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

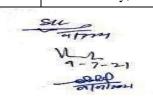

Tr.													1
CO1		1	3	1	1	1	-	3	-	-	-	-	-
CO2		2	1	1	3	1	-	3	-	-	-	-	-
CO3		3	1	1	3	3	-	3	-	-	-	-	_
CO4		2	1	1	3	1	-	3	-	-	-	-	-
CO5		2	1	3	1	3	-	3	-	-	-	-	_
Averag	ge	2	1.4	1.4	2.2	1.5	-	3	-	-	-	-	-
	·	CO-P	SO Ma	pping 1	Matrix	for Co	ırse M	CA/G	EN/2/	CC9			
Cos		PS	SO1		PSO2		PSO3		P	SO4		PSO	5
CO1			3		1		3			1		-	
CO2			3		1		3			2		-	
CO3			3		1		3			3		-	
CO4			3		1		3			3		-	
CO5			3		1		3			3		-	
Averag	ge		3		1		3			2.4		-	
					Course	e Conte	ent						
			MC	A/GEN	/2/CC9			raphi	cs				
Unit - II	graphic system- beam p monitor Drawin system; Scan co generati 2-D Tra panning tweezin	refreshenetrates, LCI g geo onversi ion of cansform g; inpu	n CRTs, tion shad monited metry: on: sym- ellipse; nations:	raster dow m ors, VG coordin metrica transla	scan a ask more and S nate systal DDA attion; ro	nd rand nitors, SVGA r stem, r , simple station;	lom sc look up esolution esolution e DDA	an mo table on; han on, us , Bres	onitors s, pla rd cop se of enham	s grey sma pa y device homo	shade anel, I ces-pri ogeneo e draw ; shear	s, Interpretation in ters, produced us cooling algorithms: zo	rlacing, d LCD plotters ordinate orithm,
Unit - III	tweezing. Graphic operations: clipping-line clipping using Sutherland-Cohen and midpoint sub-division algorithm, polygon clipping; window and view port; windowing transformation; filling-stack based fill algorithm; Multimedia: concepts of hypertext/hypermedia; multimedia applications; multimedia authoring; multimedia hardware; images; bitmaps; windows paint brush.												
Unit - IV 3-D Graphics: 3D modeling of objects; 3D display techniques; coordinate system; 3D transformation matrices for translation, scaling and rotation; parallel projection; perspective projection; hidden surface removal, z-buffer, back face, scan line, depth sorting, area subdivision; shading- modeling light intensities, gouraud shading, phong shading.													
	П			Te	ext/Refe	erence l	Books						
Text Books.	1. Dona 2. New						_	_			1 cGrav	v Hill.	

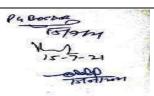
Reference	1.John F. KoegelBufore, Multimedia Systems, Addison Wesley.
Books	2. Foley, Computer Graphics Principles & Practice, Addison Wesley.
	3. Rogers, Procedural elements of Computer Graphics, McGraw Hill.
	4. D.P. Mukherjee, Fundamentals of computer Graphics and Multimedia, PHI.

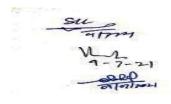


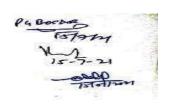


	MCA/GEN/2/CC10: Database Systems												
Course Type	Course	Contact				Assessment							
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

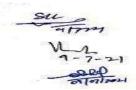

Course Objectives: The objective of this course is to get the students familiar with the concepts, models, architecture and applications of database systems.

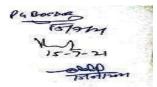

models, architecture and applications of database systems.												
Course Outcomes	At the	e end o	f this c	ourse,	the stu	dent wi	11 b	e able to	o:			
CO1						_		ns, EEF				
	_							views i				-
			-		ise seci	urity is:	sues	s, semai	ntic d	ata m	odels	, and
200			archite									
CO2			_					, EEI				
			s, nor	mal to	rms, S	SQL co	onst	raints a	and v	news,	reco	overy
002	algori			001						1		
CO3								s, recov				
CO4		entiate		class	and	super		class, rmal for		ializa	tion	and
CO5								ecovery		migue	and	data
003						fferent			icci	mque	and	uata
CO-PO Mapping Matrix for Course MCA/GEN/2/CC10												
Cos									1			61
	PO1	PO2	PO3	P04	PO5	P06	PO7	P08	P09	PO10	PO11	PO12
	Д	Д	Ь	Ъ	Ъ	Ъ	Ъ	Ъ	Ъ	Ā	P	P
CO1	1	3	1	1	1	-	3	-	-	2	-	-
CO2	2	1	1	3	1	-	3	-	-	2	-	-
CO3	3	1	1	3	3	-	3		-	2	-	-
CO4	2	1	1	3	1	-	3	-	-	2	-	-
CO5	2	1	3	1	3	-	3	-	-	2	-	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	2	-	-
C	O-PSO	Mappi	ing Mat	trix for	Cours	e MCA	GE	N/2/CC	10			
Cos	PS	O1	PS	SO2	-	PSO3		PSC	04		PSO	5
CO1	3	3	j	3		3		1			-	
CO2	3	3 3 2 -										
CO3		3		3		3		3			-	



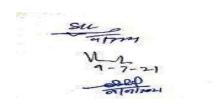

CO4	3	3	3	2	<u> </u>				
				3	-				
CO5	3	3	3	3	-				
Average	3	3	3	2.4	-				
	CO-PEO Mapp	ing Matrix for	Course MCA/G	EN/2/CC10					
COs	PEO1	PEO2	PEO3	PEO4	PEO5				
CO1	1 3 1 3								
CO2	2	3	1	3	3				
CO3	3	3	1	3	3				
CO4	3	3	1	3	3				
CO5	3	3	1	3	3				
Average	2.4	3	1	3	3				
		Course C							
Unit I			Database System		characteristics of				
	and disadvantage Database system	es of a DBMS, in concepts and a ture and data	on and data integr mplication of data architecture- data independence da t modules.	abase approach. models, schem	as and instances,				
	relationship type types, E-R diagra Conventional da	es, roles and s ams, design of a ta models- an o model- relation	types, entity sets tructural constrai n E-R database so verview of netwo nal model conce sic operations.	nts, design issu chema. ork and hierarch	ues, weak entity ical data models.				
		system conce	epts: introduction pts, properties schedules.						

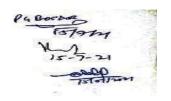
	Concurrency control techniques: locking techniques, timestamp ordering, multiversion techniques, optimistic techniques. Recovery techniques: recovery concepts, recovery techniques in centralized DBMS. database security: introduction to database security issues.
Text/Reference Books	
Text Books	 Elmasri&Navathe, Fundamentals of Database System, 3e, Addison Wesley, New Delhi. Korth&Silberschatz, Database System Concept, 4e, McGraw Hill International Edition.
Reference Books	 C.J. Date, An Introduction to Database System 7e, Addison Western, New Delhi. Abbey Abramson & Cory, ORACLE SI-A Beginner's Guide, Tata McGraw Hill Publishing Company Ltd.


	MCA/GEN/2/CC11: Artificial Intelligence											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	t Hours/Week Mode		External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					

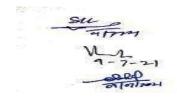

Course Objectives: The objective of this course is to provide an understanding of Artificial Intelligence techniques and their applications. Various search techniques and expert systems along with other components of artificial intelligence in computer science will be covered.

Course Outcomes	At the end of this course, the student will be able to:	
CO1	define: artificial intelligence terms, types of search strategy, production system,	,
	knowledge representation, learning techniques and genetic algorithm terminological	gies.
CO2	explain: the types and properties of search algorithm, predicate calculus,	
	knowledge representation and explore the theories that demonstrate intel	ligent
	behavior including intelligent editor, learning by induction and dealing w	ith
	uncertainty.	
CO3	use: search strategy/genetic algorithm/ fuzzy logic and learning technique.	
CO4	classify types of: search strategy, production system, learning, operator of gene	tic
	algorithm, knowledge representation and approaches that deals with uncertainty	<i>l</i> .
CO5	compare and select types of: search strategy, production system, learning, operagenetic algorithm, knowledge representation and approaches that deals with uncertainty.	tor of
C	O-PEO Mapping Matrix for Course MCA/GEN/2/CC11	

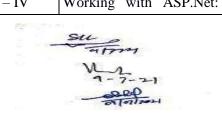

	CO-PEO Mappi	ing Matrix for C	ourse MCA/G	EN/2/CC11	
Cos	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3
Li					

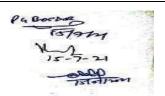

Average		2.4		3			1		3		3	
CO-PO Mapping Matrix for Course MCA/GEN/2/CC11												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	-	-	2	-	-
CO2	2	1	1	3	1	-	3	-	-	2	-	-
CO3	3	1	1	3	3	-	3	-	-	2	-	-
CO4	2	1	1	3	1	-	3	-	-	2	-	-

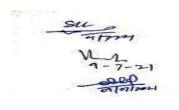
CO5	2	1	3	1	3	-	3	-	-		2	-	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-		2	-	-
	CO-PS	O Map	ping	Matri	x for C	Course	MCA	GEN	/2/CC	11			
Cos	PS	SO1		PSO2		PS	О3		PSC)4		PS	O5
CO1		3 1 3 -									-		
CO2		3 1 3 -									-		
CO3		3		1		3	3		3				-
CO4		3		1		3	3		3				-
CO5		3		1		3	3		3				-
Average		3		1		3	3		2.4	1		,	-
		MCA	GEN		rse Co 11: Ar	ntent tificial	Intelli	igence	e e				
Unit – I	The policians of the clausa Know	uction: redicate I form, ledge	backşe calc inferences	ground ulus: s ence ru entatio	and hi yntax les, res	story, o and sen	overvie nantic and u	ew of for p inificatesenta	AI approposition.	tion asso	nal lo ociati	gic and	d FOPL, work &
Unit – II	search Search iteration	ı, n algori ve deep nax et	thms: ening c.), c	uninfo (and it)	ormed nformational	search ed sear	depth ch (hil lexity,	-first, l clim prop	bread bing, berties	th-f oest	ïrst, first	depth-f	irst with gorithm, corithms,
Unit - III	comm product Rule-b in ex- algebr	nutative ection sy cased e pert sy ca, non	pro ystems expert ystems mono	ductions, contractions, systems, Bay	n sys rol of s ns: arc resian logic	tems, earch in hitectu probab	decon n produ re, de pility l reaso	nposal uction evelop theor oning	ble a syster oment, y, Star with	nd ns. m nfor	non anag d c	ing und ertaint	nd non- nposable certainty y factor y logic,
Unit – IV	editor: Genet	s, learn ic algo	ing by orithm	induc s: pro	tion. blem		entatio	on, ei					ntelligent perators:
	_		T	'ext/Re	eferen	ce Bool	KS						
Text Books	 George F. Luger, Artificial Intelligence, Pearson Education. Dan W. Patterson Introduction to Artificial Intelligence and Expert system, PHI. 												
Reference Books	Add	dison V s J. Nil	Vesley sson,	Princip	oles of		al Inte	lligen	ce, Na	rosa	a Pub	olishing	ligence" g house.

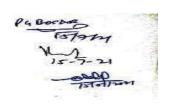


Me	MCA/GEN/2/CC12: Web Development using Servlet, JSP and ASP.NET											
Course Type	Course	Contact	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
					20 5 5		Attendance					

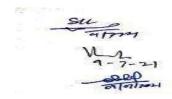

Course Objectives: To illustrate the basic concepts and building blocks of Servlet, JSP and ASP.Net language programming using the tire architecture approach. Learn how to write moderately complex programs efficiently. Learn making Web-based application in Servlet, JSP as well as ASP.Net


regrams emerging. Zeam making were bused approximation in service, but as went as first in the											
Course Outcomes	At the end of this course, the student will able to:										
CO1	outline: basic html tags, cascading style sheet, javascript fundamentals, server side programming concepts: jsp, servlet, asp.net, secure socket layer, cookies, java mail, master pages, site navigation.										
CO2	explain: htm server page	explain: html tags, javascript concepts, servlet, servlet life cycle, java server pages, secure connection using SSL, cookies, controls in asp.net, master pages, site navigation, java mail.									
CO3		tags, css, javascr ection importance,			et concepts,						
CO4	programmin	categorize: static and dynamic pages, client side and server side programming, server types, get and post methods, servlet and jsp programming, jap and asp.net platform, asp.net controls;									
CO5	programmin	choose: static or dynamic pages, client side or server side programming, server types, get or post method, servlet or jsp programming, jap or asp.net platform, asp.net controls; and									
CO6	create: sam	ple application us	ing javascript	, html, jsp,	servlet and						
CO	-PEO Mappin	ng Matrix for Cours	e MCA/GEN/2	2/CC12							
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	3	3	3	3						
CO2	2	2 3 3 3									
CO3	3	3 3 3 3									
CO4	3	3	3	3	3						



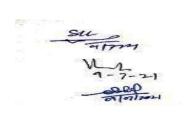

											1		
CO5		3			3			3		3	3	3	
CO6		3			3			3		3	3	3	
Average		2.5			3			3		3	3	3	
	CO-	PO Ma	pping	Matri	x for C	Course	MCA	GEN/2	/CC12	2	'		
Cos		2	ω,	4	δ.	9	<i>L</i>	<u>&</u>	6	01	11	12	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	POL	PO12	
CO1	1	3	1	1	1	-	3	1	-	-	-	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
	CO-I	SO Ma	pping	Matri	x for (Course	MCA	/GEN/2	2/CC1	2	ı	1	
Cos		PSO1		PS	O2		PSO	3	PS	SO4	PS	O5	
CO1		3		-	1		1			1	-	-	
CO2		3		7	2		2			2	-	-	
CO3		3		3	3		3			3	-	-	
CO4		3		3	3		3			3	-	-	
CO5		3		3	3		3			3	-	-	
CO6		3		3	3		3			3	-	-	
Average		3		2	.5		2.5		2	2.5	-	-	
	/CEN/	2/0010	*** 1			ontent		I (ICD	1.4	CD NE	ъ		
		2/CC12											
		tion for neet, jav											
	function	ns), intr	oducti	ons to t	ypes o	f serve	ers.						
Unit - II	Workin	g with s	servlet	: introd	uction	to ser	vlet, lif	e cycle	of serv	let, sup	porting	classes	
		let prog								Reques	st and re	esponse	
	objects, data validation in servlet, working with web.xml.												
Unit - III	Working with JSP: introduction to Java Server Pages, JSP tags, use JSP tags with JavaBeans, introduction to session tracking and how it works, working with cookies												
	(creatio	creations, view, delete), using JavaMail, introduction to Secure Socket Layer(SSL), now SSL works, when to use secure connection.											
	now SS	L work	s, whe	n to use	e secui	re conn	ection.	•					
Unit – IV	Workin	ig with	ASP	Net:	introd	uction,	visua	ıl studi	o env	rironme	nt, wel	form	

	structure(container and components- textbox, list box, combo box, buttons, pictures), user and server controls, basic client side script, Working with master page, site navigation, asp.net security model and its types, forms authentication and its types.
	Text/Reference Books
Text Books	 Scott Guelich, Shishir Gundavaram, Gunther Birznieks, CGI Programming with Perl, 2e, O'Reilly. William J. Pardi, XML in Action, Web Technology, Microsoft Press. Aaron Weiss, Rebecca Taply, Kim Daniels, Stuven Mulder, Jeff Kaneshki, Web Authoring Desk Reference, BPB Publication. E. Balagurusamy, Programming in C#, 4e, Tata McGraw Hill. Herbert Schildt, C#: A Beginner's Guide, Tata McGraw Hill Jon Galloway, Professional ASP.NET Core 2.0, Wrox Publication.
Reference Books	 Thomas A Powell, HTML-The Complete Reference, 3e, Tata McGraw Hill. Jeffery R. Shapiro, The Complete Reference Visual Basic.NET, Tata McGraw Hill V.P. Jain, The Complete Guide to C # Programming, Dreamtech Press. Methew Macdonald, The Complete Reference ASP.NET, Osborne TMH.



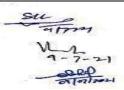

Me	MCA/GEN/2/CC13 Software Lab: Web Development using Servlet, JSP											
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					

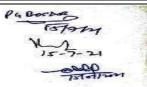
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on practical file, performance in practical exam and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands-on practice with J2EE programming concepts covered in course MCA/GEN/2/CC12.

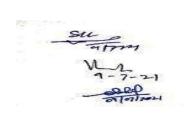
Course	At the end of thi	s course, the sti	ıdent will be a	able to:							
Outcomes	,										
CO1	outline: basic html tags, cascading style sheet, javascript fundamentals,										
	_	server side programming concepts: jsp, servlet, secure socket layer, cookies, java mail.									
CO2	explain: tags in	html, concepts	of javascripts	, servlet, servl	et life cycle,						
	java server page	java server pages, secure connection using SSL, cookies.									
CO3		apply: html tags, css, javascript, servlet, jsp concepts, secure connection, cookies in web programs.									
CO4	categorize: static and dynamic pages, client side and server side										
	programming,	programming, server types, get post methods, servlet and jsp									
	programming;										
CO5	choose: static or		•	-	<u> </u>						
	server types, get										
CO6	develop: web ap	plication using	javascript, htr	nl, jsp, servlet.							
(CO-PEO Mapping	Matrix for Cou	rse MCA/GEN	N/2/CC13							
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1 3 3 3 3									
CO2	2	3	3	3	3						

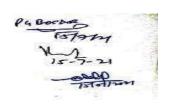
CO3		3			3		3			3		3
CO4		3			3		3			3	Ì	3
CO5		3		3		j	3		3		İ	3
CO6		3			3		3			3		3
Average		2.5			3		3			3		3
	CO-	PO Ma	pping	Matri	x for (Cours	e MCA	/GEN	/ 2/CC 1	13	1	
Cos	PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-F	SO Ma	apping	Matr	ix for	Cour	se MCA	/GEN	1/2/CC	13		
Cos		PSO1		PS	SO2		PSO3	ı	P	SO4	P	SO5
CO1		3			1		1			1		-
CO2		3			2		2			2		-
CO3		3			3		3			3		-
CO4		3			3		3			3		-
CO5		3			3		3			3		-
CO6		3			3		3			3		-
Average		3		2	2.5		2.5		,	2.5		-



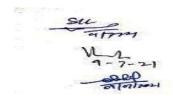

MCA/GEN/2/CC14 Software Lab: Web Development using ASP[dot]NET									
Course Type	Course			Maxim	ım Marks	Exam	Assessment		
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods		
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Attendance/ Practical File		

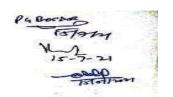
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on practical file, performance in practical exam and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands-on practice with ASP[dot]NET programming concepts covered in course MCA/GEN/2/CC12.

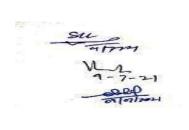

Course Objectives	At the end of this course, the student will be able to:
CO1	outline: basic html tags, cascading style sheet, javascript fundamentals, server side programming concepts, asp.net, secure socket layer, cookies, master pages, site navigation.
CO2	explain: tags in html, concepts of javascripts, secure connection using SSL, cookies working, visual studio environment, asp.net security model, controls in asp.net, master pages, site navigation.
CO3	apply: html, asp.net concepts controls in designing web pages.
CO4	categorize: static and dynamic pages, client side and server side programming, server types, get post methods, asp.net controls, security models.
CO5	choose: static or dynamic pages, client side or server side programming,

	ser	ver typ	es, ge	et or po	st met	hod, a	asp.net	contr	ols, fo	rms au	hentica	ation.	
CO6		velop: v											
	CO-F	PEO Ma	appin	g Matr	ix for (Cours	e MCA	/GEN	/2/CC	14			
Cos		PEO1		PEO2			PEO3			PEO4		PEO5	
CO1		1		3	3	ĺ	3			3		3	
CO2		2		3	3	ĺ	3			3		3	
CO3		3		3	3		3			3		3	
CO4		3		3	3		3			3		3	
CO5		3		3	3		3			3		3	
CO6		3		3	3		3			3		3	
Average		2.5		3	3		3			3		3	
CO-PO Mapping Matrix for Course MCA/GEN/2/CC14													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	1	-	-	-	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
	CO-I	PSO Ma	ppin	g Matri	ix for (Cours	e MCA	/GEN	/2/CC	14			
Cos	F	PSO1		PSC)2		PSO3		PS	SO4	PS	SO5	
CO1		3		1			1			1		-	
CO2		3		2			2			2		-	
CO3		3		3			3			3		-	
CO4		3		3			3		3			-	
CO5		3		3			3		3			-	
CO6		3		3			3		3		-		
Average		3		2.:	5		2.5		2	2.5		-	

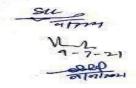


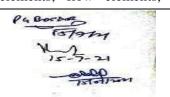


MCA/GEN/3/CC15: Web Development									
Course Type	Course	Contact	3		m Marks	Exam	Assessment		
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods		
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance		

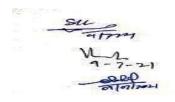

Course Objectives: The objective of this course is to get the students familiar with different concepts related with information architecture, HTML5 and XML for web development.

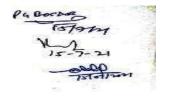

Course Outcomes	At the end of this course, the student will be able to:
CO1	outline: information architecture, role of architect, collaboration, organizing information, navigation design, designing search interface, indexing, grouping content, conceptual design, html tags, layouts, basics of xml, html5 fundamentals.




CO2						nitectur , navi						
		_	_			g conte	_		_	_	_	
						fundam		_				<i>U</i> ,
CO3						avigatio						
		audio support in browser, style sheets, form controls, features										
		ructure of XML, relationship between html, sgml and xml, overview f html5.									rview	
CO4			infor	mation	ı sv	stem,	navig	ation	syste	em,	organiz	zation
	_				•	f html	_		•		_	
						cts, gen						
CO5						stem,					organiz	
						f html cts, gen						omary
CO6						ng htm						web
	servio	es.										
CC	O-PEO	Mapp	ing M	atrix fo	or Co	urse M	CA/GI	EN/3/	CC15			
Cos	PE	EO1	Ï	PEO2		PEC	03		PEO4			PEO5
CO1		1 3				3		3			3	
CO2		2		3		3 3				3		
CO3		3		3		3			3		3	
CO4		3		3		3			3			3
CO5		3		3		3			3		3	
CO6		3		3		3			3			3
Average	2	2.5		3		3			3			3
C	O-PO	Mappi	ing Ma	trix fo	r Cou	rse MC	CA/GE	N/3/C	CC15			
COs												2
	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
												1
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-

	CO-PSO Mapp	oing Matrix for (Course MCA/G	EN/3/CC15				
Cos	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	1	1	1	-			
CO2	3 2 2 2							
CO3	3	3	3	3	-			
CO4	3	3	3	3	-			
CO5	3	3	3	3	-			
CO6	3	3	3	3	-			
Average	3	2.5	2.5	2.5	-			
	MCA	Course Co GEN/3/CC15: V		nt				
	organizing v designing n navigation el systems, sea right stuff, t	avigation systements, remote reching your web	tranets, creating ms, types of navigation eleme site, designing t to search, group	cohesive organization systems, designing ehe search interfering content, c	nization systems, stems, integrated elegant navigation face, indexing the onceptual design;			
Unit - II	buttons, intro tables, advar support in positioning v	oduction to layou aced layout: fram browsers, video with style sheets.	t: backgrounds, ones and layers, his support, other	colors and text, tml and other m r binary form	issues, images as fonts, layout with nedia types. audio nat. style sheets, and emerging form			
Unit - III	XML declar formatting e type definition XML relation documents.	ation, element the lement, table element, table element (DTD), types. It is between ways to use XI	tags nesting and ment, mark-up of XML objects. HTML, SGML, ML, XML for of	I structure, XM element and attr and XML, b lata files, embe	ML document, the ML text and text ributes, document asic XML, valid edding XML into uture of XML.			
Unit - IV	HTML documents, converting XML to HTML as XML, the future of XML. HTML5: overview of HTML5 and other web technologies: internet and web technologies, HTML5 and its essentials, next generation of web development, exploring editors and browsers supported by HTML5, creating and saving an HTML document, validating an HTML document, viewing an HTML document, hosting web pages. Fundamentals of HTML: understanding elements- root elements, metadata elements, section elements, heading elements, flow elements, phrasing							

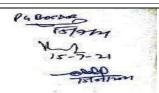




	elements, embedded elements, interactive elements, describing data types- RFC and IANA documentations, W3C specifications, immediate solutions.
	Text/Reference Books
Text Books	 Steven Holzner,"HTML Black Book", Dreamtech Press India Pvt. Ltd. 2000. Savaliya, Developing Web Applications, 2e, Wiley India Ltd Web Technologies - Black Book, Dreamtech Press India Pvt. Ltd.
Reference Books	 Web Technologies: HTML, JAVASCRIPT, PHP, JAVA, JSP, ASP.NET, XML and Ajax, Black Book by Kogent, Wiley India Ltd. P.J. Deitel& H.M. Deitel, Internet and World Wide Web How to program, Pearson.

		MCA/GEN/3	3/CC16: IoT	& Cloud	Comp	outi	ng		
Course Type	Course	Contact	Delivery	Maxim	um M	1ark	S	Exam	Assessment
	Credit	Hours/Week	Mode	External	Int	erna	ıl	Duration	Methods
Compulsory Theory	04	04	Lecture	70	20	30 5	5	3 Hours	TEE/MTE/ Assignment/ Attendance

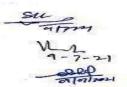
Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2

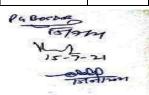


marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: To study the fundamental concepts of cloud computing, its enabling technologies, cloud service models and security concerns, to learn core issues of Internet of Things, IOT communication protocols and security concerns.

Course	At the	end of	this co	urse, th	e stude	nt will	be able	to:				
CO1	applica	ine clo	orincip oud co	_	veb con g: evo	lution,	ty. charac	eteristic	s, wor	inication		allenges models
CO2		virtualization, architecture, security challenges and risks. understand and describe IoT: framework, architecture, design, communication										
CO2	challer unders	challenges, applications, principles of web connectivity. understand and describe cloud computing: evolution, characteristics, working, service models, virtualization, architecture, security challenges and risks.										
CO3	use clo	oud con	nputing	g servic	es in di	fferent	fields o	of applic	cations.			
CO4	_			framev d compt					_		-	e.
CO5	grade/d applica	diagrammatise cloud computing: service models, service-oriented architecture. grade/compareIoT: communication challenges, security issues, enabling technologies, application areas, and protocols. grade/compare cloud computing: service models. virtualization, and hypervisors.										
	CC)-PEO	Mapp	ing Ma	trix fo	r Cour	se MC	A/GEN	1/3/CC	16		
COs	PEO1			PEO2			PEO3			PEO4	4 P	EO5
CO1	1			3			1			3		3
CO2		2		3				1		3		3
CO3		3		3			1			3		3
CO4		3		3			1			3		3
CO5		3			3			1		3		3
Average		2.4			3			1		3		3
	C	O-PO	Mappi	ing Ma	trix for	Cours	se MCA	A/GEN/	/3/CC1	6		
COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	P012
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	_	2	-	-
CO5	2	1	3	1	3	_	3	3	_	2	_	-
Average	2	1.4	1.4	2.2	1.8		3	2.4	1	2		


COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
Average	3	3	3	2.4	-

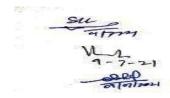

Course Content
MCA/GEN/3/CC16: IoT& Cloud Computing

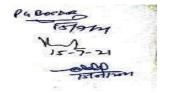
	MCA/GEN/3/CC16: IoT& Cloud Computing
Unit - I	Internet of Things: what is the IOT and why is it important, IoT conceptual framework, IoT architectural view, technology behind IoT, sources of IoT, examples of IoT, M2M communication, layered architecture (3 & 5 Layered) of IoT, physical design and logical design, domain-specific IoTs, security issues of IoT.
Unit - II	Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life and entertainment, health & fitness, smart environment and agriculture, supply chain and logistics, energy conservation. Design principles for web connectivity: web communication protocols for connected devices, message communication protocols for connected devices.
Unit - III	Introduction to cloud computing: what is a cloud, definition of cloud computing, evolution of cloud computing, characteristics of cloud computing, how cloud computing works, role of networks in cloud computing. Service models: IaaS, PaaS, SaaS, public, private and hybrid cloud.
Unit - IV	Introduction to virtualization, resource virtualization-server, storage, network, load balancing and virtualization. Hypervisors and its types, service oriented architecture (SOA), overview of security issues, challenges and risks of cloud.
	Text/Reference Books
Text Books	 Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing a Practical Approach, Tata McGraw Hill, New Delhi, 2010 Robert Elsenpeter, Toby J. Velte, Anthony T. Velte, Cloud Computing: A Practical Approach, 1e, Tata McGraw Hill Education, 2011. Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Cloud Computing for Dummies, Wiley Publishing, 2010
Reference Books	 RajkumarBuyya, James Broberg, AndrzejGoscinski, Cloud Computing-Principles and Paradigms, Wiley, 2011. Raj Kamal, Internet of Things-Architectures and Design Principles, McGraw Hill Education, 2017

MCA/GEN/3/DSC1(i): Linux and Shell Scripts

Course Type	Course	Contact	Delivery	Maxim	Maximum Marks		Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods

Optional	04	04	Lecture	70	3	30		3 Hours	
Theory					20	5	5		Assignment/ Attendance

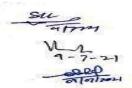

Course Objectives: The objectives of this course are to provide the in-depth coverage of various concepts of Linux. Linux administration is an essential course for the students.

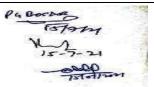

Course Outcomes	At the end of this course, the student will be able to:
CO1	define and outline: basic requirements, features, essential commands of Linux, vi editors, processes scheduling, communication commands, simple (grep, sed) and advanced filters (awk, perl).
CO2	explain: the organization, file system, Shells, file permissions, priorities, processes, communication commands in Linux and operations performed by the simple as well as advanced filters.
CO3	perform: operations in Linux, modes of operations in vi, mailing communication, regular expressions along with the simple and advanced filters.
CO4	categorize: the Linux commands, processes, priorities, communication commands, simple and advanced filters using regular expressions.
CO5	compare: shells, file permissions, processes, command with different options, simple filters like grep, sed and advanced filters like awk, perl.
CO6	create: Linux shell scripts showing the use of commands, regular expressions and filters.

CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC1(a)

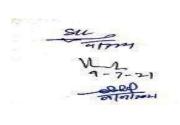
COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	3	3	1	3	3

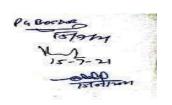
CO-PO Mapping Matrix for Course MCA/GEN/3/DSC1(a)												
COs	PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	-	3	1	_	-	-	-



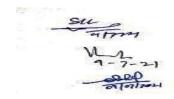

CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	-	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-

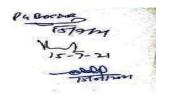
CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC1(a)


COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-

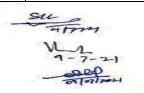

	Course Contents MCA/GEN/3/DSC1(a): Linux and Shell Scripts
Unit I	Introduction, hardware requirements for Unix/Linux, salient features of Unix-multiuser capability, multitasking, communication, security, portability. Unix system organization, types of shells, Unix commands, the Unix file system, listing of files and directories, file permissions with chmod, disk related commands. Essential Unix/ Linux commands: cal, touch, file, file related commands, viewing files, taking printouts, file compression, the on-line Unix manual.
Unit - II	I/O redirection and piping, the vi editor, modes of operations in vi. processes in Unix/Linux: background processes, nohup command, killing a process, changing process priorities, scheduling of processes- the at command, the batch command, the crontab command. Communication: the write command, the wall command, motd command, mail-sending, handling incoming mail, customizing mail.
Unit - III	Simple Filters: the sample database, pr- paginating files, head, tail, cut, paste, sort, unique, tr, displaying a word-count list. Filters using regular expressions: grep – searching for a pattern, basic regular expression, extended regular expression. Sed: the stream editor, line addressing, using multiple instruction (-E and -F), context addressing, text editing, substitution(s), basic regular expression revisited.
Unit - IV	Awk: an advanced filter, simple awk filtering, splitting into fields, variables and expressions, the comparison operators, number processing, variables, the -f option, the begin and end sections, built-in-variables, arrays, functions.

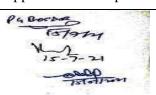
	Perl: the master manipulator- perl preliminaries, chop function, string handling functions, split, join, for each, lists and arrays, file handling, file tests, subroutines.								
Text/Reference Books									
Text Books	 Sumitabha Das, Your Unix – The Ultimate Guide, Tata McGraw Hill, 2008. YaswantKanetkar, "Unix Shell Programming", BPB Publication, (2009). 								
Reference Books	 Matthew Neil, Stones Richard, Beginning Linux Programming, Wiley India Pvt. Ltd. Christopher Negus, Linux Bible, Wiley India Pvt. Ltd. Richard Peterson, Linux – The Complete Reference, Tata McGraw Hill 								

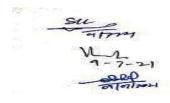

MCA/GEN/3/DSC1 (b) Android Software Development


Course Type	Course	Contact	Delivery	Maxim	um Ma	rks		Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal			Duration Methods	
Optional	04	04	Lecture	70	30			3 Hours	TEE/MTE/
Theory					20 5 5			Assignment/ Attendance	

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.


Course Objectives: The objective of this course is to provide in-depth coverage of various concepts of android application development. This course will help the students in learning to develop and publish their own android applications.


Course Outcomes	At the end of thi	s course, the stude	ent will able to	:	At the end of this course, the student will able to:									
CO1	define: android, features, development environment, architecture, software development platform and the framework related to android applications.													
CO2	explain: versions of android, architecture, software development platform, JAVA SE, the Dalvik virtual machine and various android services.													
CO3	demonstrate: android SDK, IDE, AVDs, project configuration settings, directory structure of android project, activities and services of android.													
CO4	illustrate: android versions, features, system requirements, applications, directory structures, resource folders, android services, screen sizes and android framework.													
CO5	compare and contrast: android versions with their functions, types of android applications, development platforms, layout of android applications, activities associated with android and user interfaces.													
CO6	create: android applications using different types of resources and development platforms.													
CO-PE	O Mapping Ma	trix for Course M	ICA/GEN/3/D	OSC1 (b)										
COs	PEO1	PEO2	PEO3	PEO4	PEO5									
CO1	1	3	1	3	3									
CO2	2	3	1	3	3									
CO3	3	3	1	3	3									
CO4	3	3	1	3	3									
CO5	3	3 1 3 3												
CO6	3	3	1	3	3									

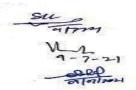


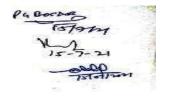
Average		2.5		3	1	1			3			3
	CO-PO	Mappin	g Mat	rix for Co	ourse M	CA/G	EN/3/I	DSC1	(b)			
COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
CO1	1	1	1	1	1	-	3	1	_	_	-	-
CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	j -	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	j -	-	-	-
	CO-PSO	Mappir	ng Ma	trix for C	ourse N	ICA/C	SEN/3/	DSC1	l (b)	II.		
COs		PSO	O1	PSO	O2	P	SO3		PSO4		PS	SO5
CO1		3		3			3		1			-
CO2		3		3			3		2		-	
CO3		3		3		3			3		-	
CO4		3		3			3		3			-
CO5		3		3			3		3			-
CO6		3	1	3			3		3			-
Average		3		3		3			2.5		-	
	MCA/	GEN/3/1		Course C (b) Andr		ware]	Develo	pmen	t			
Unit - I	Introduction: Android, Android versions and its feature, The Android market application store. Android Development Environment: system requirements, Android SDK, installing Java, and ADT bundle, eclipse integrated development environment (IDE), creating Android Virtual Devices (AVDs).											
Unit - II	Android Architecture Overview, creating a new Android project, defining the project name and SDK settings, project configuration settings, configuring the launcher icon, creating an activity, running the application in the AVD, stopping a running application, modifying the example application, reviewing the layout and resource files.											
Unit - III	Android s Virtual default re	Machine	e, The	directo	ry stru	cture	of an	And	droid	proje		
Unit - IV	Android	Frame	work	overviev	v, And	roid a	applica	ation	comp	onent	s, A	ndroid

	Android Manifest XML: declaring your components, understanding Android views, view groups and layouts, Graphical User Interface screen with views, displaying pictures, files, content providers, and databases.						
Text/Reference Books							
Text Books	 Burton Michael, Android App Development for Dummies, Wiley, 2015. Wei-Meng Lee, Beginning Android 4 Application Development, Wiley India (Wrox), 2013. John Horton, Android Programming for Beginners, Packet Publishing, 2015. 						
Reference Books	1. Ian F. Darwin, Android Cookbook Problems and Solutions for Android Developers, 2e, O'Reilly,2017.						

MCA/GEN/3/DSC2 (a): Network Security

Course Type	Course	Contact	Delivery	Maximu	m Ma	ırks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Inte	ernal	Duration	Methods	
Optional Theory	04	04	Lecture	70	3	30	3 Hours	TEE/MTE/ Assignment(s)/	
					2 3	5 5		Attendance	


Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

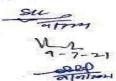

Course Objectives: To study fundamental concepts in Network Security, security attack, cryptography, authentication, web security, system and email security.

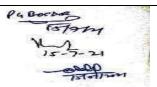
At the end of this course, the student will be able to:						
define: computer security, security standards, cipher model, encryption						
techniques, data encryption standards, public-key cryptography, security at transport layer, SSL/TSL attacks, wireless security and IEEE 802.11i.						
explain: computer concepts related with the security, symmetric techniques,						
dvanced encryption standard, RSA, concept of digital signature, security						
protocols, wireless security measures and email security.						
illustrate: the different features related with computer security, encryption and						
symmetric techniques, data encryption standards, security at transport layer						
and wireless LAN security.						
classify: the information about security, its architecture, types of attacks,						
security mechanism, encryption standards, protocols at transport layer and						
wireless LAN security.						
evaluate: the security trends, security mechanisms, cipher model, RSA, Diffie-						
Hellman key exchange, transport layer security, SSL/TSL attacks, wireless						
security and IP security.						

CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC2(a)

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3

CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3


CO-PO Mapping Matrix for Course MCA/GEN/3/DSC2 (a)

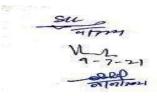

COs	PO1	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	P012
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	1
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-

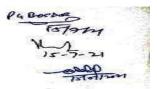
CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC2 (a)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-

	Course Content MCA/GEN/3/DSC2 (a): Network Security
Unit – I	Computer Security Concepts – Introduction, security, security trends, components of information system, OSI security architecture, security attacks, goals for security, security mechanisms, security standards. Cipher model, cryptanalysis and brute-force attack, classical encryption techniques – symmetric techniques – substitution techniques, transposition techniques, rotor machines, steganography.
Unit – II	Traditional block cipher; data encryption standard — encryption and decryption, advanced encryption standard — structure and expansion functions. Public-key cryptography — principles, applications and requirements; RSA, Diffie-Hellman key exchange. Concept of digital signature.
Unit – III	Security at Transport Layer, web security considerations, Transport Layer Security, TLS record protocol, change cipher spec protocol, alert protocol, handshake protocol, heartbeat protocol;

	SSL/TSL attacks; HTTPS; Secure shell; user authentication protocol, connection protocol.							
Unit – IV	Wireless Security, wireless security measures, mobile device security - threats and strategy. Wireless LAN security, IEEE 802.11i - services, operation and phases. Email security, S/MIME, PGP, overview of IP security.							
	Text/Reference Books							
Text Books	 William Stallings, Cryptography And Network Security Principles And Practice, Pearson Education Forouzan, Mukhopadhyay, Cryptography & Network Security, McGraw Hill 							
Reference Boo	1. AtulKahate, Cryptography and Network Security, TMH 2. Godbole, Information Systems Security, Wiley India Mark Stamp, Information Security Principles and Practice, Willy India							


MCA/GEN/3/DSC2 (b): Wireless Network


Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: To study fundamental concepts in wireless network, various LAN standards, IP and IPV6 Layer, Transmission protocols and WAN standards.

Course Outcomes	At the end of this course, the student will be able to:						
CO1	define: wireless LAN, architecture, mobile network layer, mobile						
	transport layer and wireless wide area network.						
CO2	describe: WLAN technologies, IEEE 802.11 types , IEEE 802.16,						
	Bluetooth, IPV6, mobile ad-hoc network, TCP enhancements for wireless						
	network, UTMS, 3G-MSC, 3G-SGSN, 3G-GGSN, applications of 4G,						
	features and challenges of 5G.						
CO3	illustrate: wireless LAN, system architecture, physical layer, Mac layer,						
	Bluetooth architecture, mobile IP, mobile ad-hoc network, mobile						
	transport layer, TCP improvements, wireless wide area network, HSDPA,						
	features and challenges of 4G, 5G.						
CO4	analyze: WLAN technologies, 802.11b, 802.11a, IEEE 802.16, IPV6,						
	Routing, TCP enhancements, TCP improvements, UMTS core network						
	architecture, firewall, 3G, 4G and 5G networks.						

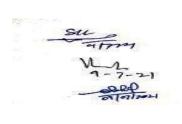
CO5 compare: different Wireless LAN technologies, mobile network layer, mobile transport layer, Mobile IP, mobile ad-hoc networks, protocols, TCP improvements and wireless WAN types.

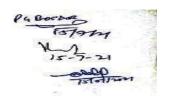
CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3

CO-PO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-

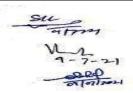

CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)

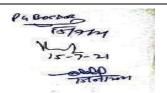

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-

Course Content MCA/GEN/3/DSC2 (b): Wireless Network										
Unit - I	Wireless LAN: Introduction-WLAN technologies: Infrared, UHF narrowband, spread spectrum -IEEE802.11: System architecture, protocol architecture, physical layer, MAC layer, 802.11b, 802.11a — Hiper LAN: WATM, BRAN, HiperLAN2 — Bluetooth: Architecture, Radio Layer, Baseband layer, Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX.									

91777 VL 1 9-7-21

Unit - II	Mobile Network Layer: Introduction - Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation, IPV6- Network layer in the internet-Mobile IP session initiation protocol - mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing.										
Unit - III	obile Transport Layer :TCP enhancements for wireless protocols - Traditional CP: Congestion control, fast retransmit/fast recovery, Implications of mobility - assical TCP improvements: Indirect TCP, Snooping TCP, Mobile TCP, Time at freezing, Selective retransmission, Transaction oriented TCP - TCP over 3G ireless networks.										
Unit - IV	Wireless Wide Area Network: Overview of UTMS Terrestrial Radio access network-UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol, features and challenges of 4G, Applications of 4G, Introduction to 5G vision,5G features and challenges.										
	Text/Reference Books										
Text Books	 Jochen Schiller, "Mobile Communications", 2e, Pearson Education 2012. Vijay Garg, "Wireless Communications and Networking", 1e, Elsevier, 2007. 										
Reference Books	 William Stallings, Wireless Communications and Networks, Pearson/Prentice Hall of India. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", 2e, Academic Press, 2008. Anurag Kumar, D. Manjunath, Joy Kuri, "Wireless Networking", 1e, Elsevier 2011. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", 1e, Pearson Education, 2013. 										

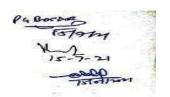


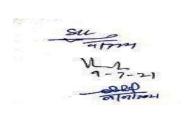


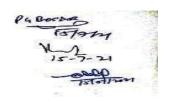
	MCA/GEN/3/DSC3 (a): Discrete Mathematics												
Course	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment Methods						
Type	Credit	Hours/ Week	Mode	External	Internal	Duration							
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
					20 5 5		Attendance						

Course Objectives: This course is aimed at making the students familiar with various discrete structures, operations performed thereupon and their implementation mechanism.

Course Outcomes	By the end of this course, the student will be able to
CO1	define: sets and elements, introduction and representation of relations, types
	of functions, graphs and multigraphs, Boolean algebra, group, and subgroups
CO2	describe and discuss: inclusion-exclusion principle, finite and Infinite sets., types & composition of relations, types of graphs, sorting and searching,
	Boolean algebra and groups.

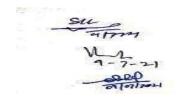


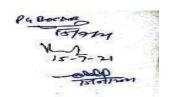

CO3	a	algebra a	ınd grou	mathema ips, direc	cted an	d undire						
CO4				d eleme lean alge	_					_		s and
CO5	C	letermin	e: com	plex pro plean alg	blem	related	to se	ts and	elem			and
(CO-PE	O Map	ping Ma	trix for	Cours	e MCA	/GEN	/3/DS(C3 (a)			
COs		PEO1 PEO2 PEO3 PEO4 PEO5										
CO1		1		3		1			3		3	
CO2		2		3		1			3		3	
CO3		3		3		1			3		3	
CO4		3		3		1			3		3	
CO5		3		3		1			3		3	
Average	verage 2			3		1			3		3	
CO-PO Mapping Matrix for Course MCA/GEN/3/DSC3 (a)												
COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	_	3	_	_	_	_	_
CO2	2	1	1	3	1	_	3	_	_	_	_	-
CO3	3	1	1	3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	_	3	j -	_	-	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	_	-	-
C	O-PSC) Mapp	ing Ma	atrix fo	r Cou	rse MC	A/GE	N/3/D	SC3 (a)		
COs			PSO1	P	SO2	P	SO3	F	SO4		PSO5	i
CO1			3		1		3		1		-	
CO2			3		1		3		2		-	
CO3			3		1		3		3		-	
CO4			3		1		3		3		-	
CO5	CO5				1	3		3			-	
Averag	e		3		1		3		2.6		-	
				Course	Conte	ent						


MCA/GEN/3/DSC3 (a): Discrete Mathematics

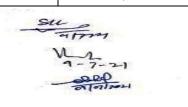
St. 27771

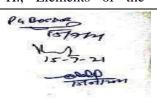
Unit - I	Sets and elements, inclusion-exclusion principle, finite and Infinite sets, power sets, multisets, introduction and representation of relations, types of relations, composition of relations: introduction to functions, types of functions.									
Unit - II	Graphs and multigraphs, sequential and linked representation of graphs, Directed and Undirected graphs: Types of graphs, labelled and weighted graphs, complete, regular and bipartile graphs, planar graphs, tree graphs, paths, connectivity, depth first search, breadth first search, topological sort.									
Unit - III	Boolean algebra, basic definitions, duality, truth tables, boolean functions, basic logical operations on propositions, proposition and truth tables, tautologies and contradictions, algebra of propositions, rules of inference.									
Unit - IV	Group and subgroups, semigroups groups, normal subgroups, homomorphisms, rings, integral domain and fields, ordered sets, hasse diagram of partially ordered sets, lattices, bounded lattices, distributive lattices, complemented lattices.									
	Text/Reference Books									
Text Books	 Seymour Lipschutz, Marc Lars Lipson, Discrete Mathematics, McGraw-Hill International Editions, Schaum's Series. Bernard Kolman, Robert C. Busbym, Discrete Mathematical Structures for Computer Science, Prentice-Hall of India Pvt. Ltd. 									
Reference Books	 Alan Doerr, Kenneth Levaseur, Applied Discrete Structures for Computer Science, Galgotia Publication Pvt. Ltd. Kennech G. Rosen, Discrete Mathematics and its Applications, McGraw- Hill International Editions, Mathematics Series. 									





	MCA/GEN/3/DSC3 (b): Theory of Computation											
Course	Course Credit	Contact Hours/ Week	Delivery Mode	Maximu	ım Marks	Exam	Assessment Methods					
Type				External	Internal	Duration						
Optional Theory	04	04 04 Lecture		70	30	3 Hours	TEE/MTE/ Assignment/					
Theory					20 5 5		Attendance					

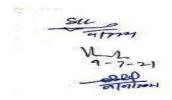

Course Objectives: to understand fundamental concepts of finite automata, regular grammar, mealy and Moore machine, context free language and grammar their properties, context free language and grammar.

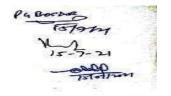

Course Outcomes By the end of this course, the student will be able to												
Course Outcomes												
CO1					_			_			omata,	
					_		ontext	free lan	guage &	k gran	nmar, c	context
					gramma							
CO2		discuss: concept of context free language and grammar, pushdown automata, equivalence of deterministic and non-deterministic finite automata,										
	_											omata,
		ambiguity in grammars and languages, concept of Turing machine.										
CO3		use: Pumping lemma to check language is not regular, pushdown automata to										
		check context free language ,Turing machine to solve basic calculation.										
CO4		classify: finite automata, regular grammar, context free grammar, context free										
		anguage, context sensitive grammar, normal forms, pushdown automata,										
CO5		Turing machine. Compare and contrast: NFA & DFA, mealy and Moore machine, CNF& GNF,										
003		languages, grammars, different automatas, Turing machine.										
CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC3 (b)												
COs	PI	EO1		PEC)2]	PEO3		PEO4		PE	O5
CO1		1		3			1		3		3	
CO2		2		3			1		3		3	
CO3		3		3			1		3		3	
CO4		3		3			1		3		3	
CO5		3		3			1		3		3	
Average	2	2.4		3			1		3		3	
CO	-PO 1	Mappi	ng Ma	atrix	for Cou	ırse M	[CA/G]	EN/3/D	SC3 (b)		
COs												61
	PO1	PO2	PO3	P04	PO5	90d	PO7	PO8	P09	PO10	PO11	PO12
	Ь	Ъ	Ъ	Ь	Ь	Ь	Ь	Ь	L	P	P(P(
CO1	1	3	1	1	1	-	3	-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-

CO3	3	1	1	3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-
СО	-PSO	Mapp	ing M	atrix	for Co	urse N	ICA/G	EN/3/	DSC3 (b)		
COs]	PSO1		PSC	O2	P	SO3		PSO4		PS	O5
CO1		3		1			3		1		-	-
CO2		3		1			3		2		-	-
CO3		3		1			3		3		-	-
CO4		3		1			3		3		-	-
CO5		3		1			3		3		-	-
Average		3		1			3		2.6		-	-
Course Content MCA/GEN/3/DSC3 (b): Theory of Computation												
Unit - I Finite Automata: Deterministic and non-deterministic finite automata, applications of finite automata, equivalence of deterministic and non-deterministic finite automata, state minimization of DFA, Kleen's characterization theory for sets accepted by finite automata, regular grammar, mealy and Moore machine. Unit - II Context Free Language and Grammar: Context free grammar, parse tree, application of context free grammars, ambiguity in grammars and languages. Pushdown Automata: Deterministic pushdown automata and Non-										nd non- Kleen's rammar, rse tree, nages.		
Unit - III	Prop pumplangu	valence erties oping le pages, o ext Ser	e of Proof Cormandecision	DA's atext-Itext for coon pro	and CF Free La ontext-foperties	G's. Inguage Free gra of con	s: Nor ammars text fre	mal for	re prop ages.	ontext	free gra	ammars, text-free erties of
Unit - IV	Turi mac Dete	ng ma hine, o erminis	chine, equiva tic T	extendence	nsions of o	to the ne-tape iine),	basic '	Turing multi-	machin tape Tu	ne (mu uring	lti-tape machir	ques for e Turing ne, Non alti-stack
			T	ext/R	eferen	ce Boo	ks					
Text Books	2. I	McGra	w Hill Linz,	An in	ıtroduc					·	_	outation, Jones &
Reference Books	1	Automa	ata, Pe	arson	Educa	tion.			-			ation to

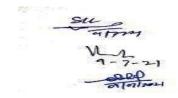
- computation, PHI Learning.
- 3. Michael Sipser, Introduction to the Theory of Computation, Cengage Learning.

MCA/GEN/3/DSC3 (c): Compiler Construction

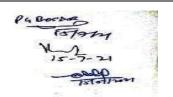

Course Type	Course	Contact	Delivery	Maximum Marks		ım Marks		Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal			Duration	Methods
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/ Attendance
					20	3	3		Attendance


Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: To study fundamental concepts of compiler, interpreters, assemblers, lexical analysis, syntax analysis, intermediate code generation and code optimization techniques used in compiler design.

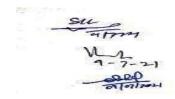

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: syntax analysis, grammar, intermediate code, code optimization,
	code generation ,syntax directed translation.
CO2	explain: basics of compilers, interpreters, assemblers, compiler construction
	tools, process of lexical analysis, syntax analysis, types of grammar, code
	optimization and code generation.
CO3	illustrate: various analysis-synthesis model of translation, lexical analysis,
	syntax analysis, optimization of basic blocks, loops optimization, peephole
	optimization and blocks code generation from directed acyclic graphs.
CO4	analyze: phase of compilation, finite state automata recognition of regular
	expressions, parser generator, optimization technique of code and
	management of code.
CO5	contrast: compiler, interpreters and assemblers, finite state automata
	recognition, process of syntax analysis, code improving transformations and
	syntax directed translation scheme.

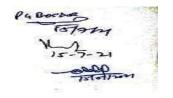
CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC3 (c)								
COs	PEO1	PEO2	PEO3	PEO4	PEO5			
CO1	1	3	1	3	3			
CO2	2	3	1	3	3			
CO3	3	3	1	3	3			
CO4	3	3	1	3	3			
CO5	3	3	1	3	3			
Average	2.4	3	1	3	3			
CO	CO-PO Mapping Matrix for Course MCA/GEN/3/DSC3 (c)							



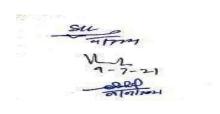
Γ.																									
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12												
CO1		1	3	1	1	1	-	3	-	-	-	-	-												
CO2		2	1	1	3	1	-	3	-	-	-	-	-												
CO3		3	1	1	3	3	-	3	-	-	-	-	-												
CO4		2	1	1	3	1	-	3	-	-	-	-	-												
CO5		2	1	3	1	3	-	3	-	-	-	-	-												
Average		2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-												
	CO-I	PSO I	Mappi	ng Ma	trix fo	r Cou	rse Mo	CA/GI	EN/3/D	SC3 (c)														
COs]	PSO1		PSO	2	PS	SO3		PSO4		PS	O5												
CO1			3		1			3		1			-												
CO2			3		1			3		2			-												
CO3			3		1			3		3			-												
CO4			3		1			3	3 -		3 -		3 -		3 -		3 -		3 -		3 -		3 -		-
CO5			3		1			3		3		-													
Average			3		1			3		2.6		-													
		MC	CA/GE		Cours SC3 (c			Const	ructio	n															
Unit - I	of too Lex	comp ds. xical	ilation	, anal	ysis-sy	nthesis	s mode	el of t	transla	tion, c	compil	er con	s, phases struction nition of												
Unit – II			•		ocess o	•		•	• •	of gran	nmars	, top-do	own and												
Unit – III																									
Unit – IV Code Generation: Basics, dynamic storage management, translating basic blocks, a simple code generator, peephole optimization, directed acyclic graphs and basic blocks code generation from directed acyclic graphs. Syntax Directed Translation: Overview of syntax directed translation scheme.																									
				Te	xt/Ref	erence	Book	S																	
Text Books	 Alfred V Aho, Principles of Compiler Design, Narosa Publishing House. Aho, Sethi, & Ullman, Compilers Principles, Techniques and Tools, Pearson Education 																								

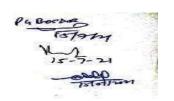
Education.


Reference Books	1.	Dhamdhere D.M, System programming and operating system, McGraw Hill.
	2.	Beck L. Leland, System Software, Pearson Education.
	3.	Fischer, Crafting a Compiler in C, Pearson Education.
	4.	Jean Paul Tremblay and Sorenson, The Theory and Practice of Compiler
		Writing, McGraw Hill.

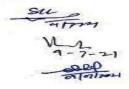

MC	MCA/GEN/3/CC17: Software Lab based on MCA/GEN/3/CC15(Web Development)									
Course Ty	pe	Course	3		- I		Exam	Assessment		
		Credit	Hours/Week	Mode	External	Internal	Duration	Methods		
Practica	.1	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File		

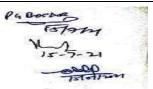
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands on practice with the concepts of web development/programming covered in course MCA/GEN/3/CC15.


Course	At the end of this course, the student will be able to:
	At the cha of this course, the student will be able to.
Outcomes	
CO1	outline: information architecture, its role collaboration, organization information, design navigation, designing search interface, indexing, grouping content, conceptual design, html tags, layouts, basics of xml, html5 fundamentals.
CO2	summarize: information architecture, its role collaboration and organization information, design navigation, designing search interface, indexing, grouping content, conceptual design, html tags, layouts, basics of xml, html5 fundamentals.
CO3	illustrate: web application navigation, design architecture, html tags, audio support in browser, style sheets, form controls, features & structure of XML, relationship between html, sgml and xml, overview of html5.
CO4	categorize: information system, navigation system, organization system, different elements of html and xml, video format and binary format, attributes of xml objects, generation of web development.
CO5	determine: information system, navigation system, organization system, different elements of html & xml, video format and binary format, attributes of xml objects, generation of web development.
CO6	develop: web applications using html and xml, development of web services.
	CO-PEO Mapping Matrix for Course MCA/GEN/3/CC17

Cos	P	PEO1		PEC	D2		PEO3		PEC)4	PEO5		
CO1	1			3			3		3		3		
CO2		2		3			3		3			3	
CO3		3		3			3		3			3	
CO4		3		3			3		3			3	
CO5		3		3			3		3			3	
CO6		3		3			3		3			3	
Average		2.5		3			3		3			3	
	CO-P	O Ma	pping	Matri	x for (Course	MCA	GEN/	3/CC17		1		
Cos													
	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12	
	1			Щ	Н	Н				Ā	Ь	Ā	
CO1	1	3	1	1	1	-	3	1	-	_	-	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
	CO-P	SO Ma	apping	Matr	ix for	Cours	e MCA	/GEN/	/3/CC17	,	,	'	
Cos	P	SO1		PSO2			PSO3		PSO4		PSO5		
CO1		3		1			1		1			-	
CO2		3		2			2		2		-		
CO3		3		3		Ï	3		3		-		
CO4		3		3			3		3		-		
CO5		3		3			3		3		-		
CO6		3		3			3		3		-		
Average		3		2.5			2.5		2.5	5		-	


MCA/GEN/3/CC18 (i): Software Lab based on MCA/GEN/3/DSC-1 (i) (Linux and Shell Scripts)

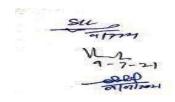

Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment
	Credit	Hours/Wee k	Mode	External	Internal	Duration	Methods
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File

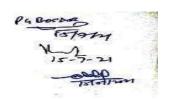
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with scripting/programming concepts of Linux and Shell script as covered in course MCA/GEN/3/DSC1 (i)

Course Outcomes	At the end of this course, the student will be able to:
CO1	define and outline: basic requirements, features, essential commands of Linux, vi editors, processes scheduling, communication commands, simple (grep, sed) and advanced filters (awk, perl).
CO2	explain: the organization, file system, Shells, file permissions, priorities, processes, communication commands in Linux and operations performed by the simple as well as advanced filters.
CO3	perform: operations in Linux, modes of operations in vi, mailing communication, regular expressions along with the simple and advanced filters.
CO4	categorize: the Linux commands, processes, priorities, communication commands, simple and advanced filters using regular expressions.
CO5	compare: shells, file permissions, processes, command with different options, simple filters like grep, sed and advanced filters like awk, perl.
CO6	create: Linux shell scripts showing the use of commands, regular expressions and filters.

CO-PEO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

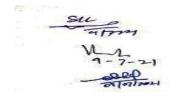

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	2.5	3	1	3	3

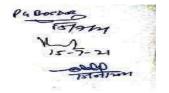

CO-PO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	P011	P012
CO1	1	1	1	1	1	-	3	1	-	-	-	-
CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	-	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-

CO-PSO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-


MCA/GEN/3/CC18 (ii): Software Lab based on MCA/GEN/3/DSC-1 (ii) (Android Software Development)


		Delivery	Maximu	ım Marks	Exam	Assessment		
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods	
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File	

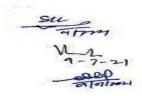
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

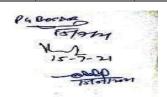
Course Objectives: The objective of this course is to get the students hands on practice with scripting/programming concepts of Android programming/development as covered in course **MCA/GEN/3/DSC1 (ii).**

Course Outcomes	At the end of this course, the student will able to:									
CO1	define: android, features, development environment, architecture, software development platform and the framework related to android applications.									
CO2	explain: versions of android, architecture, software development platform, JAVA SE, the Dalvik virtual machine and various android services.									

CO3	demonstrate: android SDK, IDE, AVDs, project configuration settings, directory structure of android project, activities and services of android.									
CO4	illustrate: android versions, features, system requirements, applications, directory structures, resource folders, android services, screen sizes and android framework.									
CO5	compare and contrast: android versions with their functions, types of android applications, development platforms, layout of android applications, activities associated with android and user interfaces.									
CO6	create: android applications using different types of resources and development platforms.									

CO-PEO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)

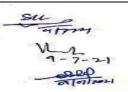

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	2.5	3	1	3	3

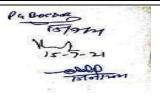

CO-PO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)

COs	PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	-	3	1	-	-	-	-
CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	_	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	_	-	-	-

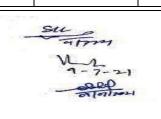
CO-PSO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)

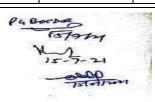
COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-

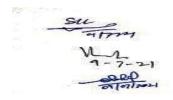

CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-

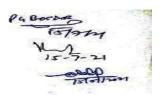

MO	MCA/Gen /3/SEC1: Presentation/Viva on Internship/Summer Training												
Course Type Course Contact			Delivery	Maxim	ım Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Internship/ Summer Training	04	-	Internship/ Training	100	-	-	Training Report/ Viva Voce						

Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of the Internship/Training Report and a presentation based viva voce exam during third semester of MCA/GEN.


Course Objectives: To expose students to real work of environment experience and at the same time, to gain the knowledge through hands on observation and job execution and allows them to relate the theory to practice. The interns/trainees will also develop skills in work ethics, communication, management and others.

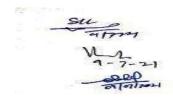

Course At the end of this course, the student would be able to:


Outcomes													
CO1	and		ndustr	y, (ii)	nitty-	gritty	of wo	ork cu		tween of indus			
CO2	un cul	derstan	d and the in	descr dustri	ibe (i) al sett	the a	acader	nia-in	_	interfa i) the e			
CO3	apj	apply the best practices and the information/knowledge gained thus far to academia.											
CO4		classify the differences between work practices and work environments of academia and industry.											
CO5		mpare ademia.		ork p	ractice	es and	work	envi	ronme	nts of	industi	ry and	
CO-PEO Mapping Matrix for Course MCA/Gen /3/SEC1													
Cos		PEO1		PEC)2		PEO3	3	PI	EO4	PI	EO5	
CO1		1		3			3			3		3	
CO2		2		3			3			3		3	
CO3		3		3			3			3		3	
CO4		3		3			3		3		3		
CO5		3		3			3		3			3	
Average		2.4		3			3	. ~		3		3	
	1	O Map		1		1		1	1		1		
Cos	PO1	PO2	PO3 2	PO4 3	PO5 3	PO6	PO7 3	PO8	PO9	PO10	PO11	PO12 3	
CO1	2	2 2	2	3	3	3	3	3	3	-	3	3	
CO2			2	1 -) 2	_			_			
CO3	3	2 2	2	3	3	3	3	3	3	-	3	3	
CO4	3	2	2	3	3	3	3	3	3	_	3	3	
Average	2.4	2	2	3	3	3	3	3	3	_	3	3	
	CO-P	SO Ma	pping	Matri	x for C	Course	MCA	/Gen	/3/SE	C1			
Cos	PS	SO1		PSO	2		PSO3		PS	SO4	PS	SO5	
CO1		3		3			3			3		3	
CO2		3		3			3			3		3	
CO3		3		3			3		3			3	
CO4		3		3			3		3			3	
CO5		3		3			3		3			3	
Average		3		3			3			3		3	



MCA/GEN/4/CC19:Python Programming										
Course Type	Course	Contact	Delivery							
	Credit	Hours/Week	Mode	External Internal		Duration	Methods			
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/A			
					20 5 5		ttendance			

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise

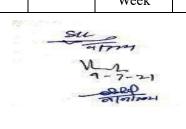


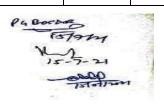


comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: The objectives of this course is to get the students familiar with basic concepts of Python programming, decision making and functions, file handling and object oriented programming concepts, database programming and to implement machine learning concepts.

Course	-									doret	ndino	r of:	
Outcomes	Atu	ie ena	or uns	cours	se, the st	uden	ı wili p	OSSES	s an ui	ideisi	anunig	301.	
CO1	defir	ne:inst	allatio	ns.woi	king,str	uctur	es.con	trolsta	temen	ts.ope	rators	lists .	
					nming c							,	
CO2	expla	ain: co	onditio	nal &	control	state	ements	,strin	gs, OO	OPs ,f	ile haı	ndling	
					packag								
CO3					raries su								
CO4		apply: python programming constructs to solve real world problems.											
04	_	categorize:datatypes,dictionaries,conditional&controlstatements,functions,python libraries.											
CO5		compare:											
		datatypes, dictionaries, conditional & control statements, functions, python											
	libra	• •							·		71 0		
CO6	desig	design:basic and advanced applications in python.											
	CO-PEO Mapping Matrix for Course MCA/GEN/4/CC19												
Cos		PEO1 PEO2 PEO3 PEO4 PEO5											
CO1		1			3		3		3			3	
CO2		2			3		3	İ	3			3	
CO3		3			3		3		3			3	
CO4		3 3 3 3								3			
CO5		3			3		3		3			3	
CO6		3			3		3		3			3	
Average		2.5			3		3		3			3	
	CO-P	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.5 3 3 3 3 20-PO Mapping Matrix for Course MCA/GEN/4/CC19 3 3 3											
COs	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO1	PO12	
CO1	1	3	1	1	1	-	3	1	-	-	-	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	1	3	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.3	2.6	2	-	3	2.5	-	-	-	-	
	CO-PS	O Maj	pping l	Matrix	for Cou	irse N	ICA/G	EN/4/	CC19		1	1	
COs		PSO1		P	SO2		PSO3		PSC	04	PS	PSO5	
CO1		3			1		1		1			-	

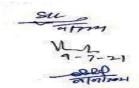


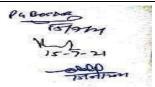


	Course Content										
Average	3	2.5	2.5	2.5	-						
CO6	3	3	3	3	-						
CO5	3	3	3	3	-						
CO4	3	3	3	3	-						
CO3	3	3	3	3	-						
CO2	3	2	2	2	-						

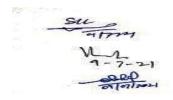
Tiverage		3	2.3	2.3	2.3	
		MCA/GEN/	Course Conte			
Unit – I	Con Var floa	tallation and Workintrol flow, Interpreriables, Python bastat, complex, using statics. String, List, Tupl	ter shell, Toker ic Operators, D tring data type. I	ns, Identifiers, Identifiers, Identifiers, Identifiers, States	Reserved keyw ing Numeric d	ords, Literals, ata types: int,
Unit – II	Core Cre Imp	nditional blocks us ntinue, Break and eating Module, using porting Package, 'mbda Function in ckages.	Else, organizing Modules and leving Package	g python codes Built-in Modules ge Content and	s using functions. Packages: Package	ons, Modules: ackage Types, ion. Powerful
Unit – III	Cla Ov Har File	ject Oriented Prograss Attributes and erriding, Data Encandling, Programmine Handling: Creatileting a File. Program	Destructors, Buapsulation, Over g using Oops cong, Opening, (ilt-in Class Att cloading Operatincepts. Closing, Writing	ributes, Inherit ors, Data Hidi	ance, Method ng, Exception
Unit – IV	Res Pyt Pyt Ma	chon NumPy: Array shape, Array Join, A chon Pandas: Data Fishon Matplotlib: Linchine Learning: Meta Distribution, Scat	Array Split, Rand rames, Read CS ne, Grid, Scatter, ean, Median, Mc	om. V, Analyzing Da Bars, Histogran de, Standard De	nta and Cleanin ns and Pie Cha	g Data. rts.
		Te	ext/Reference B	ooks		
Text Books	2. I	Chun, J Wesley, Cor E. Balagurusamy, In McGraw Hill Educa	troduction to Co	-		Using Python,
Reference Books		Barry and Paul, Head Lutz and Mark, Lear			0.	

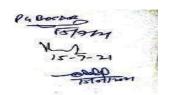
MCA/GEN/4/CC20: R Programming											
Course Type			Maximu	m Marks	Exam	Assessment					
	Credit Hours/ Mode Week	External	Internal	Duration	Methods						



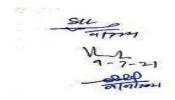


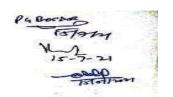
Compulsory	04	04	Lecture	70		30		3 Hours	
Theory									Assignment/
					20	5	5		Attendance


Course Objectives: To study the fundamental concepts in R programming language, data types, operators, decision making statements and iteration, functions, different data structures like list, vectors, matrices, data frames, charts and graphs, graphics functions and statistical analysis.

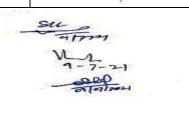

Course	At tl	ne end	of thi	s cour	se the	stude	nt will	he able	e to:			
Outcomes			01 1 111	2 2 2 3 3 3	50, 1110	200000		00000				
CO1	list :	data ty	pes,	functi	ons in	R pro	gramn	ning, vi	sualiz	zation.		
CO2		ribe: tl	•				aking	statem	ents, l	loops,	user d	efined
		tions,u				•	-	2.1				
		ain: the	-	cess o	f impo	ort and	l expoi	t of da	ita in	text fi	le, exc	el file
CO3		and MYSQL.										
003		use: various in built ,user defined function and packages . apply: R programming constructs to solve real world problems.										
CO4		gorize:										d user
	defin	ned fun	ction	s and	packaş	ges.						
CO5		pare:					1 &	contro	ol sta	atemer	nts,func	ctions,
00/		ages ir						D.		•		
	design:basic and advanced applications in R programming.											
	CO-PEO Mapping Matrix for Course MCA/GEN/4/CC20											
COs	P	EO1		PEC)2	I	PEO3	PEO4			PEC	05
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
CO6		3		3			3		3		3	
Average		2.5		2.5	5		3		3		3	
	CO-P	О Мар	ping]	Matri	x for C	ourse l	MCA/(GEN/4/	CC20			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	_	-	3	3
CO5	3	1	1	3	3	-	-	-	_	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.3	2.6	2	-	-	-	_	-	2.5	3

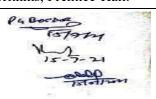
	CO-PSO M	apping Matrix for	Course MCA/G	EN/4/CC20					
COs	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	3	1	-	3				
CO2	3	3	2	-	3				
CO3	3	3	3	-	3				
CO4	3	3	3	-	3				
CO5	3	3	3	-	3				
CO6	3	3	3	-	3				
Average	3	3	2.5	-	3				
Course Content MCA/GEN/4/CC20: R Programming									
Unit - I Basic of R: Introduction to R, Features of R, Variables in R, In-Built Functions in R (mathematical, trigonometric, logarithmic, Date and Time, Sequence, I/O). Data Types in R: Vectors, Matrices, Arrays, Lists, Factors, Data Frames.									
Unit - II	Unit - II Programming in R: Decision making structures (if, Switch), Loops (For, while, repeat), User Defined functions (with argument without argument), User Defined Package. Reports using remark down (direct rendering, in-direct rendering).								
Unit - III	through meltin	ion and Manipula g and casting, spec port of data: Impo	cial functions acro	ss data elements	•				
Unit - IV	plot, Image Plo	ation: Pie chart, bat, Violin Plot. ualization: Scatter							
	•	Text/Refere	nce Books						
Text Books	 Christian Heumann, Michael Schomaker and Shalabh, Introduction to Statistics and Data Analysis - with Exercises, Solutions and Applications in R, Springer, 2016. Pierre Lafaye de Michaeux, RémyDrouilhet, Benoit Liquet, The R Software- Fundamentals of Programming and Statistical Analysis, Springer 2013. 								
Reference Books		Zuur, Elena N. Iene 4, Springer 2009.	o, Erik H.W.G. N	Meesters, Use R	- A Beginner's				



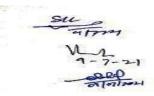

	MCA/GEN/4/DSC4(a): Soft Computing										
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment				
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods				
Optional	04	04	Lecture	70	30	3 Hours	TEE/MTE/				
Theory	Theory				20 5 5		Assignment/ Attendance				

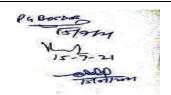
Course Objectives: The objective of this course is to cover fundamental soft computing concepts with an exposure to ANN, fuzzy Logic, optimization techniques using Genetic Algorithm (GA).


an exposure to min, in	izzy Logic, opuniization techniques using Genetic Algorithm (GA).
Course Outcomes	By the end of this course, the student will be able to:
CO1	recognize the concept of: soft computing and hard computing, simple genetic a
	fuzzy set, neuron, neural network and activation function.
CO2	understand and describe: the role of genetic algorithm operators, representation
	set and its operation, types of neural network and activation function including
	and cons.
CO3	use: genetic algorithm, fuzzy logic, ANN and their constituents
	for solving optimization problem.
CO4	differentiate: soft computing and hard computing, operators of genetic algorithms.
	activation functions of ANN.
	Analyze: fuzzification and defuzzification.
CO5	compare: soft computing and hard computing, operators of genetic algor
	different activation functions of ANN.


CO	D-PEC	Mappii	ng M	[atrix 1	for Co	urse N	ICA/C	GEN/4/I	DSC4((a)		
COs	I	PEO1	Ī	PEC)2	P	PEO3		PEO4		PEO5	
CO1		1		3			1		3		3	3
CO2		2		3			1		3		3	3
CO3		3		3			1		3		3	3
CO4		3		3			1		3		3	3
CO5		3		3			1		3		3	
Average		2.4		3			1		3		3	3
C	О-РО	Mappin	g M	atrix f	or Cou	irse M	CA/G	EN/4/D	SC4(a	a)		
COs	PO1	P02	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	<u> </u>	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1	3	3	-	3	_	-	-	-	-

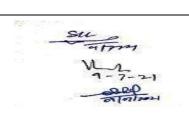
CO4	2	1	1	3	1	_	3	_	_	_	_	_		
CO5	2	1	3	1	3	_	3	_	_	-	-	_		
Average	2	1.4	1.4	2.2	1.8	_	3	_	-	_	-	_		
	CO-PS	∣ O Mappi	⊥ ng M	 [atrix f	 for Co	urse M	ICA/G	 SEN/4/I	 DSC4((a)				
COs		PSO1		PSO2		PS	SO3		PSO ²	1	PS	O5		
CO1		3		1			3		1			-		
CO2		3	1 3 2 -			-								
CO3		3		1		3 3								
CO4		3		1			3		3		-			
CO5		3		1			3		3			-		
Average		3		1			3		2.6			-		
Course Content MCA/GEN/4/DSC4(a): Soft Computing Unit – I Introduction to Soft Computing: Overview of Soft Computing, difference between														
Unit – I Introduction to Soft Computing: Overview of Soft Computing, difference between soft and hard computing, brief descriptions of different components of soft computing including artificial neural networks, fuzzy logic, genetic algorithms.														
Unit – II	 II Genetic Algorithm- Introduction to genetic algorithm, simple genetic algorithm, its representation. Selection: Roulette wheel selection, random, rank, tournament, Boltzmann selection. Crossover and its types: Single point crossover, two point crossover, multipoint crossover, ordered crossover, uniform crossover, crossover for real-valued representation. Mutation and its types: Flipping, Interchanging, reversing, replacement, mutation for real-valued representation, crossover rate, mutation rate and convergence criteria. 													
Unit – III	represer Fuzzy s fuzzy se fuzzy ar Fuzzy (Logic: Intation of et operations, importing ithmetic. Composition, max	fuzzy on: Intant to on: I	set, bantersecterming Max-M	asic protion of ologies	opertie f fuzzy in fuzz omposit	s of fu sets, zy set ion, n	zzy sets union o operation	s. f fuzz ons, pr	y sets, copertic	comples of fu	ement of zzy sets,		
Unit - IV	network neural n	al Neural ; , artificia etwork, a ation func	l neu dvan	ral net tage an	work , id disa	percep dvantag	otron, i	feed for ANNs. a	ward, activat	multil	ayer pe	rceptron		
			T	ext/Re	ferenc	ce Book	KS							
Text Books	learni 2. Zbigr	 David E. Goldberg, Genetic Algorithms in Search, Optimization and machine learning, Addison Wesley. ZbigniewMichalewicz, Genetic algorithms +Data Structures = Evolution Programs, SpringersVerlag. 												
Reference Books	1. M. M	itchell, A	n Intr	oducti	on to (Genetic	Algor	ithms, I	Prentic	ce-Hall				

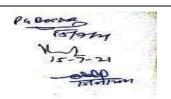



- 2. S. Rajasekaran& G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI.
- 3. S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley India.
- 4. Simon O. Haykin, Neural Networks, A Comprehensive Foundation, PHI.

MCA/GEN/4/DSC4(b): Machine Learning												
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment					
	Credit	Hours/ Week	Hours/ Mode Week		Internal	Duration	Methods					
Optional Theory	04	04	4 Lecture 7		30	3 Hours	TEE/MTE/ Assignment/ Attendance					
					20 5 5		Attendance					

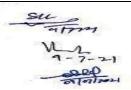
Course Outcomes	At the end of this course, the student will be able to:
CO1	define: the terms of machine learning: types of machine learning, data preprocessing, classification, regression, and neurons.
CO2	explain: learning types, data preprocessing and architecture of ANN.
CO3	apply: training and testing data using data pre processing and model selection techniques and classification, regression, clustering techniques according to their problem.
CO4	Classify: data preprocessing, model selection, regression, classification, and unsupervised learning techniques.
CO5	compare: Data Preprocessing techniques, Supervised and unsupervised learning.

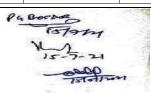

CO)-PEO	Mappir	ıg M	latrix 1	for Co	urse N	ICA/G	SEN/4/I	OSC4((b)		
COs	I	PEO1		PEO2		P	PEO3		PEO4		PEO5	
CO1		1		3		1			3		3	3
CO2		2		3			1		3		3	
CO3		3		3		1			3		3	3
CO4	3			3		1			3		3	
CO5		3		3			1		3		<u> </u>	3
Average		2.4		3			1		3		3	3
C	О-РО	Mappin	g Ma	atrix f	or Cou	rse M	CA/G	EN/4/D	SC4(l)		
COs	PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	P012
CO1	1	3	1	1	1	-	3	-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-



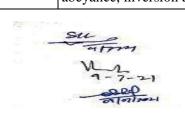
CO3	3	1	1	3	3	-	3	-	-	-	-	-	
CO4	2	1	1	3	1	-	3	-	-	-	-	-	
CO5	2	1	3	1	3	-	3	-	-	-	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-	
CO-PSO Mapping Matrix for Course MCA/GEN/4/DSC4(b)													
COs	PS	SO1		PSO2		PSO3			PSO4		PSO5		
CO1		3		1		3			1		-		
CO2		3	1			3			2		-		
CO3		3	1			3			3		-		
CO4		3	1		3			3		-			
CO5		3		1			3		3		-		
Average	3			1		3			2.6		-		
					•								

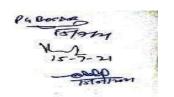
	Course Content MCA/GEN/4/DSC4(b): Machine Learning
Unit – I	Basics of Machine Learning: Introduction to artificial Intelligence and machine learning, types of machine learning and its comparisons, applications of machine learning, issues in machine learning.
Unit – II	Preparing to Model: Introduction, machine learning activities, types of data in machine learning, exploring structure of data, data pre-processing (dimension reduction and feature subset selection), model selection.
Unit – III	Supervised Learning: Introduction, classification (introduction, classification model, learning steps, common classification algorithm), regression (linear regression, multivariable regression, logistic regression).
Unit – IV	Unsupervised Learning: Introduction and its applications, techniques in unsupervised learning (clustering, K-means). Neural Network: Introduction, architecture of artificial neural network.
	Text/Reference Books
Text Books	 Tom M. Mitchell, Machine Learning, McGraw-Hill Education (India) Private Limited. EthemAlpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press.
Reference Books	 Stephen Marsland, Machine Learning: An Algorithmic Perspective, CRC Press. Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press. Peter Harrington, Machine Learning in Action, Manning ShaiShalevShwartz and Shai Ben David, Understanding Machine Learning From Theory to Algorithms, Cambridge University Press


MCA/GEN/4/DSC4(c):Genetic Algorithms

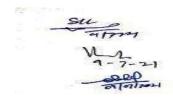

	Delivery	-			3	Exam	Assessment				
	Credit	Hours/ Week	Mode	External	Internal			Duration	Methods		
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/		
					20	5 5			Attendance		

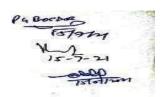
Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.


Course Objectives: To study fundamental concepts of evolutionary algorithm, genetic algorithm, their applications, genetic operators, the theoretical Analysis of Evolutionary Algorithms , Niche and Speciation


1												
Course Outcomes	At the end of	this course, the s	tudent will be a	ible to:								
CO1		epts of: evolution eness function, cr	•		•							
CO2	abeyance, Nic	describe/explain: crossover, selection mutation, Diploid, dominance, abeyance, Niche and Speciation. understand: application of genetic algorithms for job shop scheduling problems.										
CO3	use: encoding scaling.	use: encoding scheme, crossover, selection, mutation operators and fitness scaling.										
CO4	crossover, mu	differentiate: evolutionary algorithms and traditional algorithms, types of crossover, mutation, selection, inversion and reordering operator, crowding and restricted mating.										
CO5	select and de algorithms.	efend: crossover,	mutation and	selection opera	ntors of genetic							
CO	D-PEO Mapping	g Matrix for Cou	irse MCA/GE	N/4/DSC4(c)								
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	3	1	3	3							
CO2	2	3	1	3	3							
CO3	3	3	1	3	3							

CO4		3		3			1		3		3		
CO5		3		3			1		3		3	}	
Average		2.4		3			1		3		3		
	CO-PO	Mappin	g Mat	rix f	or Cou	urse MCA/GEN/4/DSC				SC4(c)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	-	-	-	-	-	
CO2	2	1	1	3	1	-	3	-	-	-	-	-	
CO3	3	1	1	3	3	-	3	-	-	-	-	-	
CO4	2	1	1	3	1	-	3	-	-	-	-	-	
CO5	2	1	3	1	3	-	3	-	-	-	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-	
CO-PSO Mapping Matrix for Course MCA/GEN/4/DSC4(c)													
COs	P	SO1]	PSO2	2	PS	SO3		PSO4	1	PSO5		
CO1		3		1		3			1		-		
CO2		3	1			3			2		-		
CO3		3	1			3			3		-		
CO4		3	1				3		3		-		
CO5		3	1			3			3		-		
Average		3		1		3			2.6		-		
		MCA/G			rse Co 4(c): (c Algo	rithms					
	algorithn algorithn	ion: Inti n, advan n - biolog al approac	tage ical a	of e	volutio I, intro	onary duction	algori algori	thm, a	pplica	tion c	of evol	utionary	
Unit - II	phenotyp	modelling e and f e and lim	itness	fun	ction.	simple	e gene						
	Boltzman Crossove crossove represent Mutation for real-v	and its	on. types ed cr types: present	s: Sinossov Flip tation	ngle power, upping,	oint cr niform Interch	ossove cros nanging ate, mu	er, two sover, g, reve	point crosso rsing, a rate an	crosso over f replace d conv	over, more for rea	ultipoint l-valued mutation criteria	
Unit - IV		cal Anal , inversio								oid, c	lominan	ice and	



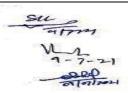

	Niche and Speciation: Fitness sharing, crowding and restricted mating. Application of GA: Genetic Algorithm for job shop scheduling problems (JSSP).												
Text/Reference Books													
Text Books	 S.N. Sivanandam, S.N. Deepa, Introduction to Genetic Algorithms, Springer. Mitchell, Melanie, An Introduction to Genetic Algorithms, United Kingdom, MIT Press, 1998. 												
Reference Books	 Goldberg, David Edward, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 2002. D. Nagesh Kumar, Multicriterion Analysis in Engineering and Management, PHI Learning, 2010. Lance Chambers, The Practical Handbook of Genetic Algorithms: Applications, 2e, United Kingdom, CRC-Press, 1995. 												

	MCA/GEN/4/DSC5(a): Data Warehousing and Data Mining												
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

Course Objectives: The objective of this course is to get the students familiar with different concepts of data warehouse and data mining, namely, OLAP, Association rule mining, classification and prediction.

Course	At the end of this course, the student will be able to:
Outcomes	
CO1	define: the concepts of data mining, data pre-processing, outliers, data warehouse ,OLAP , association rule mining, data classification prediction and cluster Analysis.
CO2	describe: key process of data mining ,data warehousing, OLAP, data warehousing to data mining , association rule, classification and prediction methods.
CO3	apply: OLAP technology and association rules. use: decision induction, Bayesian and back prorogation classification methods.
CO4	differentiate: operational database systems and data warehousing, single dimensional and multidimensional association rules, and between various data mining classification methods.

COS	07/6	Juotai	doto	minin	a and	doto	vyoroh	01160	OI AI) taahn	ology	ainala	
CO5		nuate: l multi-			_			ouse,	OLAI	ecnn	ology,	single	
	CO-PE							GEN/4	1/DSC	5(a)			
Cos		PEO1		PEC)2		PEO3	3	PI	EO4	Pl	EO5	
CO1		1		3			1			3		3	
CO2		2	Ì	3			1			3		3	
CO3		3		3			1			3		3	
CO4		3		3			1			3		3	
CO5		3		3			1			3		3	
Average		2.4					1			3		3	
CO-PO Mapping Matrix for Course MCA/GEN/4/DSC5(a)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	-	-	1	-	-	
CO2	2	1	1	3	1	-	3	-	-	1	-	-	
CO3	3	1	1	3	3	-	3	-	-	1	-	-	
CO4	2	1	1	3	1	-	3	-	-	1	-	-	
CO5	2	1	3	1	3	-	3	-	-	1	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	1	-	-	
CO-PSO Mapping Matrix for Course MCA/GEN/4/DSC5(a)													
Cos	1	PSO1		PSO	2		PSO3		PS	SO4	PS	SO5	
CO1		3		1			3			1		-	
CO2		3		1			3			2		-	
CO3		3		1			3			3		-	
CO4		3		1			3			3		-	
CO5		3		1			3			3		-	
Average		3		1			3		2	2.4		-	
		MCA	/GEN/		rse Co		Vareho	กมรเทธ	and D	ata Miı	าiทธ		
Unit I	Data N											process,	
Cilit I	data m mining cleaning concep	nining, k g systen ng, Data	tind of n, Maj a Integ rchy g	data, I or issu gration enerati	Function ies, Da and tron. Da	onalitie ta Mir ansfor	s, interning Primation	esting rimitiv , Data	patternes. Dar reduct	ns, class ta Pre-p tion, Di	ification rocessin scretiza	n of data ng: Data tion and liers and	
Unit - II	l l									-		rehouse,	


9-7-21 9-7-21 157774 157774 15-7-21


	Multidimensional Data Model, Data warehouse Architecture, Data warehouse Implementation, data warehousing to data mining, Data warehouse usage.
Unit - III	Association Rule Mining: Mining single-dimensional Boolean association rules from transactional databases, mining multilevel association rules from transaction databases, Mining multidimensional association rules from relational databases and data warehouses, From association mining to correlation analysis, constraint-based association Mining.
Unit - IV	Data Mining-Classification and Prediction: issues regarding classification and prediction, classification by decision induction, Bayesian classification, classification by back propagation, classification based on concepts from association rule mining other classification methods. Cluster Analysis: What is Cluster Analysis, Types of Data in Cluster Analysis, Applications and Trends in Data Mining.
	Text/Reference Books
Text Books.	 Ale Berson, Stephen Smith, KorthTheorling, Data Mining, Tata McGraw Hill. Pieter Adriaans and DolfZantinge, Data Mining, Addison-Wesley Longman. Sam Anahory, Data Warehousing in the Real World, Addison-Wesley Longman.
Reference Books	1. Chanchal Singh, Data Mining and Warehousing, Wiley.

	MCA/GEN/4/DSC5(b): Big Data Analytics												
Course	Course	Contact	Delivery	•		Exam	Assessment						
Туре	Credits	Hours/ Week	Mode	Externa 1	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance						

Course Objectives: The objective of this course is to get the students familiar with different concepts of Big Data and their realization/implementation using Hadoop and Map Reduce tool sets.

Course Outcomes	At the end of this course, the student will be able to:								
CO1	lefine: Big Data and Hadoop, digital data, Apache Hadoop, analysing Data								
	with Unix tools and Hadoop, Hadoop Streaming, Hadoop Echo System,								
	IBM Big Data Strategy, HDFS, Hadoop Ecosystem, Pig, Hive shell and								
	services, HBasics, Big SQL.								
CO2	understand and describe: Big Data and Hadoop, Analysing Data with								
	Hadoop,								
	Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy,								

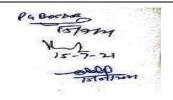
	Hadoop Distributed File System, command line interface, job scheduling, shuffle and sort, task execution, Hadoop Ecosystem, Pig, HiveQL, Hbase.
CO3	apply and use: Apache Hadoop, HDFC, HBasic, Big Data and Hadoop, HDFS command line interface, Hadoop file system interfaces, data flow, Hive services.
CO4	classify: Big Data and Hadoop, Big Data Analytics, Apache Hadoop, HDFS ,Hive shell, Hive services.
CO5	Compare feature set of Pig, Hadoop, HDFS.

CO-PEO Mapping	Matrix for	Course M	CA/GEN/4/DS	SC5(b)
CO-I LO Mapping	IVIALIIA IUI	Course M		3C3(D)

	11 0				` /
Cos	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3

CO-PO Mapping Matrix for Course MCA/GEN/4/DSC5(b)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	1	3	1	1	1	-	3	_	-	1	-	-
CO2	2	1	1	3	1	-	3	_	-	1	-	-
CO3	3	1	1	3	3	-	3	-	-	1	-	-
CO4	2	1	1	3	1	-	3	-	-	1	-	-
CO5	2	1	3	1	3	-	3	-	-	1	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	1	-	-

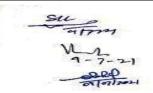

CO-PSO Mapping Matrix for Course MCA/GEN/4/DSC5(b)

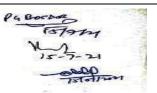
	Co-150 Mapping Matrix for Course McM dEt (4)											
Cos	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	1	3	1	-							
CO2	3	1	3	2	-							
CO3	3	1	3	3	-							
CO4	3	1	3	3	-							
CO5	3	1	3	3	-							
Average	3	1	3	2.4	-							

Course Content MCA/GEN/4/DSC5(b): Big Data Analytics

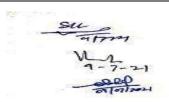
Unit I

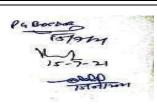
Introduction to Big Data and Hadoop: Types of digital data, introduction to Big Data,Vs of Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop, analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data

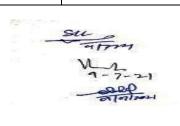


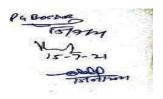

2

	Strategy,Big Data applications.						
Unit – II	HDFS (Hadoop Distributed File System): The design of HDFS, HDFS concepts, command						
	line interface, Hadoop file system interfaces, data flow, data ingest with flume and Scoop and Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures.						
	Map Reduce: Anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types and formats, Map Reduce features.						
	Hadoop Ecosystem: Pig: Introduction to Pig, execution modes of Pig, comparison of Pig with databases, grunt, Pig latin, user defined functions, data processing operators. Hive: Hive shell, Hive services, Hive metastore, comparison with traditional databases, HiveQL, tables, querying data and user defined functions. Hbase: HBasics, concepts, clients, example, Hbaseversus RDBMS. Big SQL: Introduction						
	Text/Reference Books						
	 Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012. SeemaAcharya, SubhasiniChellappan, "Big Data Analytics", Wiley 2015. ArvindSathi, "BigDataAnalytics: Disruptive Technologies for Changing the Game", MC Press. 						
Books	 Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Jay Liebowitz, "Big Data and Business Analytics" AuerbachPublications, CRC press (2013) 						
	 AnandRajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data 						


	MCA/GEN/4/DSC5(c): Data Science											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment Methods					
	Credit	Hours/Week	Mode	External	Internal	Duration						
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance					

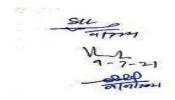

Course Objectives: The objective of this course is to get the students familiar with the concepts and processes of Data Science including collection, filtering, processing, analysis and visualization.

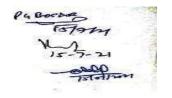



Course Outcomes	A	at the	end of t	this cou	rse, the	student	will b	e able	to:			
CO1	d in d	define: data science process, classification of data, big data, web data, sampling, data analysis techniques-correlation, regression, mean, mode, kurtosis, Bayesian inference etc., neural network, fuzzy logic, rule of mining, hadoop, hive, cloud database, and visualization.										
CO2	d te	understand and describe: graphical representation of data, storage and retrieval of data, evolution of analytic scalability, sampling distribution, data analysis techniques, Bayesian model and network, induction rule, neural network, fuzzy logic, data mining techniques, data analysis framework and visualization.										
CO3	a te	nalysi echniq	s techn	iques, B	ayesian	netwo	rk, ind	uction	ools, stati rule, fuz database,	zy logi	c, data n	
CO4	S	amplii	ng, data	analysi	is techn	iques, l	inear a	nd no	reporting n-linear t l applicat	ime ser		
CO5	s: d	amplii ata an	ng meth alysis f	od, data ramewo	a analys ork and	is techr techniq	nique, 1 ue suit	time se able in	nalytic to eries, min n given si I/DSC5(o	ning tec tuation	hniques	
Cos	PE	O1		PEO2		P	EO3		PEO ₂	4	PF	EO5
CO1	1	[3		! !	1		3			3
CO2	2	2	i İ	3			1		3	ļ		3
CO3	3	3		3			1		3			3
CO4	3	3		3			1		3			3
CO5	3	3		3		ļ	1		3			3
Average	2.			3			1		3			3
	CO-F	PO Ma	apping	Matrix	for Co	urse M	ICA/G	EN/4/	/DSC5(c))		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	-	-	1	-	-
CO2	2	1	1	3	1	-	3	-	-	1	-	-
CO3	3	1	1	3	3	-	3	-	-	1	-	-
CO4	2	1	1	3	1	-	3	-	-	1	-	-
CO5	2	1	3	1	3	-	3	-	-	1	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	_	-	1	-	-
	CO-P	SO M	apping	g Matri	x for C	ourse N	ICA/(SEN/4	/DSC5(d	<u>:)</u>		
Cos	P	SO1		PSO	2	P	SO3		PSO ₂	1	PS	SO5
CO1		3		1			3		1			-
CO2		3		1			3		2			
CO3		3		1			3		3			-
CO4		3		1			3		3			-
CO5		3		1			3		3			-

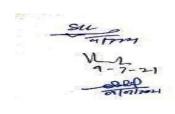
Average		3	1	3	2.4	-									
		Mo	Course Co CA/GEN/4/DSC5(
Unit I															
Unit – II	vari regr netv	ables, analysis ression modelin works, support v	using mean, me	dian, mode, stand nalysis, Bayesian nethods;	dard deviation, modeling, infe	probability, random skewness, kurtosis, rence and Bayesian									
Unit – III	Fuzz meti	npetitive learnin zy Logic: extra hods, neuro fuz ociation Rule I	g, principal compo acting fuzzy mode zy modelling,	nent analysis and alls from data, fuz	neural networks; zy decision tree	and generalization, es, stochastic search rn mining, temporal									
Unit – IV															
	1		Text/Referen	ce Books											
Text Books.	2.		-	•		ger, 2007. ntasets", Cambridge									
Reference Books		Streams with A	aming the Big Data dvanced Analytics chelineKamber "D	", John Wiley & S	ons, 2012.	· ·									
	•														

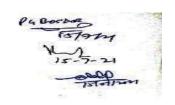
- 3. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013.
- 4. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013.
- 5. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2014.


MCA/Gen /4/SEC2: Project Work

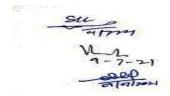

Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment Methods
	Credit	Hours/Week	Mode	External	Internal	Duration	
Core Compulsory Project Work	08	16	Project Work	150	50	1	Teacher Interaction/ Project Report/ Viva Voce

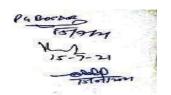
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of project report and a presentation based viva voce exam.


Course Objectives: To expose students to the realm of software development by working on some real-life problem. Students get to apply the principles of software development in practice and apply one of the several software development paradigms.

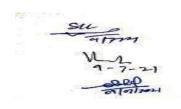

Course Outcomes	At the end of	this course, the stu	dent would have	learnt to:						
CO1	enumerate va	arious software dev	elopment paradi	gms and steps/p						
		general concepts in								
CO2		understand and describe various software development paradigms and								
		steps/phases therein as well as the general concepts in software development								
		life cycle. use/apply the principals and practices of software engineering in real-life								
CO3				vare engineering	g in real-life					
		elopment project w								
CO4	•	tware developme		ts, paradigms,	tools and					
G 0.7		based on various p		. 1 1 .	1 0					
CO5		justify) between								
	-	paradigms that sur	it to particular ty	pe of software	development					
COC	project.	1 1 0		. 1 11.	C 1.1					
CO6	design and develop software systems for simple real-life problems individually and complex systems as a member of team.									
	CO-PEO Map	ping Matrix for Cou	irse MCA/Gen /	4/SEC2						
Cos	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	3	3	3	3					
CO2	2	3	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
CO6	3	3	3	3	3					

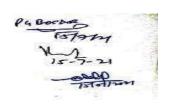
Average		2.5		3			3			3		3	
	CO	-PO Ma	pping	Matrix	for Co	ourse N	MCA/(Gen /4	SEC2		•		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	3	3	3	3	1	3	-	3	3	
CO2	2	3	1	3	3	3	3	2	3	-	3	3	
CO3	3	3	1	3	3	3	3	3	3	-	3	3	
CO4	3	3	1	3	3	3	3	3	3	-	3	3	
CO5	3	3	3	3	3	3	3	3	3	-	3	3	
CO6	3	3	3	3	3	3	3	3	3	-	3	3	
Average	2.5	3	1.6	3	3	3	3	2.5	3	-	3	3	
	CO-	PSO M	apping	Matri	x for C	ourse	MCA/	Gen /4	SEC2	2			
Cos	PS	SO1		PSO	2		PSO3		PSO4		PS	PSO5	
CO1		3	Ì	3			3		1			3	
CO2		3		3			3		2			3	
CO3		3		3		3			3		3		
CO4	3			3			3			3		3	
CO5	3			3			3		3			3	
CO6	3			3			3		3			3	
Average		3		3			3		2.5			3	



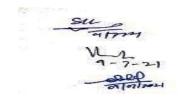

MCA/GI	MCA/GEN/4/CC21: Software Lab based on MCA/GEN/4/CC19(Python Programming)											
Course Type Course		Contact	Delivery	Maxim	ım Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Practical/ Lab Work	50	-	-	TEE/ Practical File					

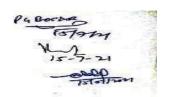
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the basis of practical file, performance in practical exam and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands on practice with scripting/programming concepts of Python language as covered in course MCA/GEN/4/CC19.


Course Outcomes	At the end of this course, the student will be able to:								
CO1	define: installations, working, structures, control statements, operators,								
	lists ,object oriented programming concepts, python libraries.								
CO2									
CO2	explain: conditional & control statements ,strings, OOPs ,file handling concepts ,libraries and packages of python programming.								
CO3		python libraries s			das .				
		on programming c							
CO4		latatypes, dictionar							
	ns,python li	braries.	•						
CO5	compare:								
	-	ctionaries.conditio	onal&controlsta	tements.function	ons.pvthon				
	datatypes,dictionaries,conditional&controlstatements,functions,python libraries.								
CO6	design:basic	and advanced app	plications in pyt	hon.					
	CO-PEO Map	ping Matrix for Co	ourse MCA/GEN	N/4/CC21					
COs	PEO1	PEO2	PEO3	PEO4	PEO5				
CO1	1	3	3	3	3				
CO2	2	3	3	3	3				
CO3	3	3	3	3	3				
CO4	3	3	3	3	3				
CO5	3	3	3	3	3				
CO6	3	3	3	3	3				

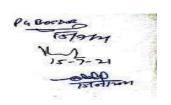
Average		2.5		3			3			3		3	
	CO-	PO Ma	pping	Matri	x for C	Course	MCA	GEN/	4/CC2	1	"		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	1	-	-	-	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	1	-	
CO4	3	3	1	3	1	-	3	3	-	-	1	-	
CO5	3	1	1	3	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.3	2.6	2	-	3	2.5	-	-	-	-	
	CO-I	SO Ma	apping	Matr	ix for (Course	MCA	/GEN	/4/CC2	21		ı	
COs	PS	SO1		PSO	2		PSO3		PS	SO4	PS	SO5	
CO1		3		1			1		1			-	
CO2		3		2			2			2		-	
CO3		3		3			3		3			-	
CO4		3		3			3			3		-	
CO5		3		3			3		3			-	
CO6		3		3			3		3			-	
Average		3		2.5			2.5		2.5			-	




MCA/0	MCA/GEN/4/CC22: Software Lab based on MCA/GEN/4/CC20(R Programming)											
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment Methods					
	Credit	Hours/Week	Mode	External	Internal	Duration						
Practical	02	04	Practical/ Lab Work	50	-	-	TEE/ Practical File					

Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with scripting/programming concepts of R programming language as covered in course MCA/GEN/4/CC20.


	1				•				.11 1	1.1				
Course Outcome	es	At the												
CO1			list: data types, functions in R programming, visualization.											
CO2			describe: the syntax of decision making statements, loops, user defined											
			functions, used define packages;											
		-	explain: the process of import and export of data in text file, excel file											
CO3			and MYSQL.											
003			use: various in built ,user defined function and packages . apply: R programming constructs to solve real world problems.											
CO4											ts, in b		1	
		user d							101 500	.temen	, 111 0	arr arra		
CO5									rol sta	temen	ts,func	tions,		
		packa	ges i	in R	progra	ımmin	ıg.							
CO6		design	:bas	sic ar	nd adv	anced	applio	cations	in R j	progra	mming	•		
	CC)-PEO	Мар	ping	Matr	ix for (Course	e MCA	/GEN	/4/CC2	22			
COs		PEO			PEC)2		PEO3			PEO4		EO5	
CO1		1			3			3			3		3	
CO2		2			3			3		3			3	
CO3		3			3			3		3			3	
CO4		3			3			3		3			3	
CO5		3			3			3		3			3	
CO6		3			3			3			3		3	
Average		2.5			3			3			3		3	
	C	O-PO N	Ларр	ping	Matri	x for C	Course	MCA	GEN/	4/CC2	2			
COs	PO	1 PO	2 I	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3		1	1	1	-	3	1	-	-	-	-	
CO2	2	1		1	3	1	-	3	2	-	-	-	-	
CO3	3	1		1	3	3	-	3	3	_	-	_	-	
CO4	3	3		1	3	1	-	3	3	-	-	-	-	
CO5	3	1		1	3	3	-	3	3	-	-	-	-	
CO6	3	3		3	3	3	-	3	3	-	-	-	-	
Average	2.5	5 2		1.3	2.6	2		3	2.5	_	-	-	-	

	CO-PSO Mapping Matrix for Course MCA/GEN/4/CC22											
COs	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	1	1	1	-							
CO2	3	2	2	2	-							
CO3	3	3	3	3	-							
CO4	3	3	3	3	-							
CO5	3	3	3	3	-							
CO6	3	3	3	3	-							
Average	3	2.5	2.5	2.5	-							

